4.6 Article

Characterization of complex hydraulic fractures in Eagle Ford shale oil development through embedded discrete fracture modeling

Journal

PETROLEUM EXPLORATION AND DEVELOPMENT
Volume 48, Issue 3, Pages 713-720

Publisher

KEAI PUBLISHING LTD
DOI: 10.1016/S1876-3804(21)60057-5

Keywords

EDFM; complex fractures; hydraulic fracturing; fracture networks; reservoir simulation; shale oil

Ask authors/readers for more resources

This study extends an integrated field characterization in Eagle Ford by optimizing the numerical reservoir simulation of highly representative complex fractured systems through embedded discrete fracture modeling (EDFM). The research provides a greater understanding of the impact of complex-fractures proppant efficiency on production, with estimated pressure depletion showing the effective drainage area can be smaller than the complex fracture network if modeled and screened by the EDFM method.
This study extends an integrated field characterization in Eagle Ford by optimizing the numerical reservoir simulation of highly representative complex fractured systems through embedded discrete fracture modeling (EDFM). The bottom-hole flowing pressure was history-matched and the field production was forecasted after screening complex fracture scenarios with more than 100 000 fracture planes based on their propped-type. This work provided a greater understanding of the impact of complex-fractures proppant efficiency on the production. After compaction tables were included for each propped-type fracture group, the estimated pressure depletion showed that the effective drainage area can be smaller than the complex fracture network if modeled and screened by the EDFM method rather than unstructured gridding technique. The essential novel value of this work is the capability to couple EDFM with third-party fracture propagation simulation automatically, considering proppant intensity variation along the complex fractured systems. Thus, this work is pioneer to model complex fracture propagation and well interference accurately from fracture diagnostics and pseudo 3D fracture propagation outcomes for multiple full wellbores to capture well completion effectiveness after myriads of sharper field simulation cases with EDFM.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available