4.7 Article

Synergistic advanced oxidation process for the fast degradation of ciprofloxacin antibiotics using a GO/CuMOF-magnetic ternary nanocomposite

Journal

Publisher

ELSEVIER SCI LTD
DOI: 10.1016/j.jece.2021.105486

Keywords

Ternary nanocomposite; GO/CuBDC-Fe3O4; Advanced oxidation processes; Environmental remediation

Ask authors/readers for more resources

A novel ternary nanocomposite of GO/CuBDC-Fe3O4 was successfully fabricated using a green solvothermal method, showing high efficiency in degrading CIP antibiotics and good recyclability. The catalytic mechanism involves Cu/Fe species and (CO)-O-= groups synergistically activating PMS to degrade CIP, with (OH)-O-center dot and SO4 center dot- playing a vital role in the degradation process.
A novel strategy was described to fabricate GO/CuBDC-Fe3O4 ternary nanocomposite using a green solvothermal method. The physicochemical properties of the ternary nanocomposite were probed by ATR-FTIR, WA-XRD, Raman, FE-SEM, TEM/HRTEM, STEM/mapping, and EDS spectroscopy. In this nanocomposite, graphene oxide (GO) nanosheets were used as an ideal platform for CuBDC metal-organic framework (MOF) and Fe3O4 growth, aiming to create a peroxymonosulfate (PMS) activator to degrade ciprofloxacin (CIP) antibiotics expeditiously. The proposed ternary nanocomposite showed highest degradation rate of CIP (98.5%) within 24 min with rate constant of 0.191 min(-1). The findings demonstrated that Cu/Fe species and (CO)-O-= groups within ternary nanocomposite catalyzed PMS synergistically to the formation of the hydroxyl and sulfate radicals for CIP degradation. Furthermore, the ternary nanocomposite showed good recyclability enabling facile separation of the catalyst from reaction mixtures using an external magnet. On the other hand, radical quenching tests and electron paramagnetic resonance (EPR) reveal that the (OH)-O-center dot and SO4 center dot- a vital role in the degradation process. The current protocol can be a useful criterion in designing and fabrication of various ternary nanocomposites and provides new insight into environmental remediation.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available