4.8 Article

Multifunctional terahertz metasurfaces for polarization transformation and wavefront manipulation

Journal

NANOSCALE
Volume 13, Issue 34, Pages 14490-14496

Publisher

ROYAL SOC CHEMISTRY
DOI: 10.1039/d1nr03388c

Keywords

-

Funding

  1. National Natural Science Foundation of China [61675147, 61735010, 91838301]
  2. National Key Research and Development Program of China [2017YFA0700202]
  3. Basic Research Program of Shenzhen [JCYJ20170412154447469]

Ask authors/readers for more resources

This study introduces a novel technology based on dynamic phase and spatial interleaving unit arrangement for metasurfaces, enabling multiple wavefront manipulations including spin and linear polarization transformations. By designing a bifocal metasurface, various forms of wavefront manipulations can be achieved, offering a new platform for the development of terahertz integrated photonics.
Conventionally, the realization of polarization transformation and wavefront manipulation in metasurfaces relies on the Pancharatnam-Berry (PB) phase together with the dynamic phase. However, the reported polarization transformation and wavefront manipulation were limited to spin-dependent wavefront manipulation for circular polarization (CP). To obtain more abundant functions, we propose a novel technology that relies on the dynamic phase with a spatial interleaving unit arrangement. With the functions of a quarter wave plate, the metasurfaces we designed can achieve multiple wavefront manipulations which are not only for the spin polarization transformation but also for the linear polarization transformation. Specifically, we design a bifocal metasurface, which can focus on one circularly polarized component as a point and spin-opposite component as a vortex under the linearly polarized (LP) incidence. With the further adjustment of the unit arrangement, the left-hand circularly polarized (LCP) and right-hand circularly polarized (RCP) components under the LP incidence can be refocused on the same point and then composited, resulting in a new LP exit wave. Furthermore, we prove theoretically that the desired x-LP component and y-LP component under the arbitrary CP incidence can also be manipulated independently. We believe that the versatility of this method will provide a novel platform for the development of terahertz integrated photonics.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available