4.6 Article

High-entropy effect of a metal phosphide on enhanced overall water splitting performance

Journal

JOURNAL OF MATERIALS CHEMISTRY A
Volume 9, Issue 33, Pages 17913-17922

Publisher

ROYAL SOC CHEMISTRY
DOI: 10.1039/d1ta04755h

Keywords

-

Funding

  1. National Natural Science Foundation of China [U1832137, 21871130]
  2. Postgraduate Research & Practice Innovation Program of Jiangsu Province [SJCX21_0012]

Ask authors/readers for more resources

A one-step low temperature sol-gel strategy was proposed to synthesize high-entropy metal phosphide nanoparticles, which exhibited supernormal catalytic activities for the oxygen evolution reaction, hydrogen evolution reaction, and overall water splitting. The increase in metal species number led to decreased overpotentials for OER and HER, demonstrating the significant effect of high entropy on performance enhancement. This work provides a facile synthesis strategy for preparing high entropy compounds with great potential in energy and electrocatalysis applications.
High-entropy materials have gained extensive attention owing to their unique structural characteristics and outstanding properties. The synthesis of high-entropy compounds, particularly high-entropy metal phosphides, has been seldom reported because of the incompatibility between different metals and non-metals. Herein, we propose a one-step low temperature sol-gel strategy to overcome the incompatibility and synthesize high-entropy metal phosphide (HEMP) NiCoFeMnCrP nanoparticles on a carbon matrix. Due to the synergistic effect among the metal elements, NiCoFeMnCrP exhibits supernormal catalytic activities for the oxygen evolution reaction (OER), hydrogen evolution reaction (HER) and overall water splitting. The fact that the overpotentials for the OER and HER decrease with the increase of the metal species number demonstrates that the realization of high entropy has great effects on performance enhancement. Our work provides a facile and viable synthesis strategy for preparing high entropy compounds which would offer great potential in energy and electrocatalysis applications by entropy engineering.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available