4.2 Article

Hardware-efficient variational quantum algorithms for time evolution

Journal

PHYSICAL REVIEW RESEARCH
Volume 3, Issue 3, Pages -

Publisher

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevResearch.3.033083

Keywords

-

Ask authors/readers for more resources

Parameterized quantum circuits are a promising technology for achieving quantum advantage, particularly in variational simulation of time evolution. The authors present hardware-efficient alternatives to the time-dependent variational principle, reducing hardware requirements significantly. The algorithms proposed systematically increase accuracy and hardware requirements for real time evolution scenarios, with numerical analysis demonstrating performance using quantum Hamiltonians with local interactions.
Parameterized quantum circuits are a promising technology for achieving a quantum advantage. An important application is the variational simulation of time evolution of quantum systems. To make the most of quantum hardware, variational algorithms need to be as hardware-efficient as possible. Here we present alternatives to the time-dependent variational principle that are hardware-efficient and do not require matrix inversion. In relation to imaginary time evolution, our approach significantly reduces the hardware requirements. With regards to real time evolution, where high precision can be important, we present algorithms of systematically increasing accuracy and hardware requirements. We numerically analyze the performance of our algorithms using quantum Hamiltonians with local interactions.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.2
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available