3.9 Article

Further evidence of Cretaceous termitophily: Description of new termite hosts of the trichopseniine Cretotrichopsenius (Coleoptera: Staphylinidae), with emendations to the classification of lower termites (Isoptera)

Journal

PALAEOENTOMOLOGY
Volume 4, Issue 4, Pages 374-389

Publisher

MAGNOLIA PRESS
DOI: 10.11646/palaeoentomology.4.4.13

Keywords

-

Funding

  1. Strategic Priority Research Program (B) of the Chinese Academy of Sciences [XDB26000000, XDB18000000]
  2. Second Tibetan Plateau Scientific Expedition and Research project [2019QZKK0706]
  3. National Natural Science Foundation of China [31801022, 31701090, 41925008, 41688103]
  4. Natural Science Foundation of Shandong Province, China [ZR2019BC094]

Ask authors/readers for more resources

Termites are ecologically ubiquitous eusocial insects that have complex relationships with symbionts. The discovery of new Cretaceous amber fossils provides further evidence of the association between termites and rove beetles.
Termites (Isoptera) are among the most ecologically ubiquitous of terrestrial eusocial insects and provide an attractive environment for symbionts, which have evolved numerous times independently, and in lineages as diverse as millipedes and beetles. Previous studies reported the discovery of unequivocal termitophily in mid-Cretaceous amber from northern Myanmar, providing evidence that pushed the origin of termitophily back into the Mesozoic. Here we report the discovery of two more pieces of Cretaceous amber containing individuals of the trichopseniine rove beetle Cretotrichopsenius burmiticus Cai et al., 2017 (Staphylinidae: Aleocharinae: Trichopseniini) preserved together with their potential host termites, providing further evidence regarding the association between these two insect lineages. Two new termite species and genera are described as putative hosts for C. burmiticus: Arceotermes hospitis Engel & Jiang, gen. et sp. nov. and Tanytermitalis philetaerus Engel & Cai, gen. et sp. nov. Each is included in a new family, Arceotermitidae Engel, fam. nov. (type genus: Arceotermes Engel & Jiang, gen. nov.), and Tanytermitidae Engel, fam. nov. (type genus: Tanytermes Engel et al., 2007). In order to better characterize these two families the classification of lower Isoptera and clade Xylophagodea (= Cryptocercidae + Isoptera) is emended with the following new taxa: Idanotermitinae Engel, subfam. nov.; Melqartitermitidae Engel, fam. nov.; Mylacrotermitidae Engel, fam. nov.; Krishnatermitidae Engel, fam. nov.; Cosmotermitinae Engel, subfam. nov.; Hodotermopsinae Engel, subfam. nov.; Artisoptera Engel, minord. nov.; Cryptocercaptera Engel, infraord. nov. Lower termites were remarkably diverse during the mid-Cretaceous but declined in diversity considerably by the Palaeogene. The fossil rove beetle Cretotrichopsenius Cai et al., 2017 currently provides the earliest definitive evidence of termitophily and the complex association between rove beetles and termites.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

3.9
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available