4.8 Review

Status and prospect of in situ and operando characterization of solid-state batteries

Journal

ENERGY & ENVIRONMENTAL SCIENCE
Volume 14, Issue 9, Pages 4672-4711

Publisher

ROYAL SOC CHEMISTRY
DOI: 10.1039/d1ee00638j

Keywords

-

Funding

  1. National Science Foundation [1847029]
  2. ECS/Toyota Young Investigator Award
  3. DOE Office of Science [DE-AC02-06CH11357]
  4. Div Of Chem, Bioeng, Env, & Transp Sys
  5. Directorate For Engineering [1847029] Funding Source: National Science Foundation

Ask authors/readers for more resources

This paper highlights the importance of solid-state batteries in achieving electrification of the transportation sector, while also discussing challenges such as electro-chemo-mechanical degradation affecting performance metrics. Characterizing and understanding the solid|solid interfaces in solid-state batteries is crucial for designing high energy density, durable solid-state batteries.
Electrification of the transportation sector relies on radical re-imagining of energy storage technologies to provide affordable, high energy density, durable and safe systems. Next generation energy storage systems will need to leverage high energy density anodes and high voltage cathodes to achieve the required performance metrics (longer vehicle range, long life, production costs, safety). Solid-state batteries (SSBs) are promising materials technology for achieving these metrics by enabling these electrode systems due to the underlying material properties of the solid electrolyte (viz. mechanical strength, electrochemical stability, ionic conductivity). Electro-chemo-mechanical degradation in SSBs detrimentally impact the Coulombic efficiencies, capacity retention, durability and safety in SSBs restricting their practical implementation. Solid|solid interfaces in SSBs are hot-spots of dynamics that contribute to the degradation of SSBs. Characterizing and understanding the processes at the solid|solid interfaces in SSBs is crucial towards designing of resilient, durable, high energy density SSBs. This work provides a comprehensive and critical summary of the SSB characterization with a focus on in situ and operando studies. Additionally, perspectives on experimental design, emerging characterization techniques and data analysis methods are provided. This work provides a thorough analysis of current status of SSB characterization as well as highlights important avenues for future work.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available