4.7 Article

Stability and superfluidity of the Bose-Einstein condensate in a two-leg ladder with magnetic field

Journal

PHYSICAL REVIEW E
Volume 104, Issue 2, Pages -

Publisher

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevE.104.024212

Keywords

-

Funding

  1. National Natural Science Foundation of China [11764039, 11847304, 11865014, 11475027, 11305132, 11274255]
  2. Natural Science Foundation of Gansu Province [17JR5RA076, 20JR5RA526]
  3. Scientific research project of Gansu higher education [2016A-005]
  4. Innovation capability enhancement project of Gansu higher education [2020A-146, 2019A-014]
  5. Creation of science and technology of Northwest Normal University [NWNU-LKQN-18-33]

Ask authors/readers for more resources

This study investigates the stability and superfluidity of a Bose-Einstein condensate in a two-leg ladder with magnetic field, revealing three phases and a strong dependence on various parameters. The atomic interaction strength plays a significant role in modifying the energy band structure during phase transitions. Furthermore, the study shows that the dynamics and superfluidity of the system can be controlled by adjusting the atomic interaction strength, rung-to-leg coupling ratio, and magnetic flux.
The stability and superfluidity of the Bose-Einstein condensate in two-leg ladder with magnetic field are studied. The dispersion relation and the phase diagram of the system are obtained. Three phases are revealed: the Meissner phase, the biased ladder (BL) phase, and the vortex phase. The dispersion relation and phase transition of the system strongly depend on the magnitude of atomic interaction strength, the rung-to-leg coupling ratio and the magnetic flux. Particularly, the change of the energy band structure in the phase transition region is modified significantly by the atomic interaction strength. Furthermore, based on the Bogoliubov theory, the energetic and dynamical stability of the system are invested. The stability phase diagram in the full parameter space is presented, and the dependence of superfluidity on the dispersion relation is illustrated explicitly. The atomic interaction strength can produce dynamical instability in the energetic unstable region and can expand the superfluid region. The results show that the stability of the system can be controlled by the atomic interaction strength, the rung-to-leg coupling ratio and the magnetic flux. In addition, the excitation spectrums in the Meissner phase, BL phase and vortex phase are further studied. The modulation of the excitation spectrum and the energetic stability of the system by the atomic interaction strength, the rung-to-leg coupling ratio and magnetic flux is discussed. Finally, through the numerical simulation, the dynamical instability of the system is verified by the time evolution of the Bloch wave and rung current. This provides a theoretical basis for controlling the superfluidity of the system.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available