4.7 Article

Effects of the fibroblast activation protein inhibitor, PT100, in a murine model of pulmonary fibrosis

Journal

EUROPEAN JOURNAL OF PHARMACOLOGY
Volume 809, Issue -, Pages 64-72

Publisher

ELSEVIER SCIENCE BV
DOI: 10.1016/j.ejphar.2017.05.022

Keywords

Bleomycin (BLM); Fibroblast activation protein (FAP); Fibrosis; Lung; Magnetic resonance imaging (MRI); PT100

Funding

  1. Novartis Pharma AG, Basel, Switzerland

Ask authors/readers for more resources

Bleomycin (BLM) induced lung injury is detectable in C57BL/6 mice using magnetic resonance imaging (MRI). We investigated the effects of the fibroblast activation protein (FAP) inhibitor, PT100, in this model. BLM (0.5 mg/kg/day) was administered on days -7, -6, -5, -2, -1, 0 in the nostrils of male mice. PT100 (40 mu g/mouse) or vehicle (0.9%NaCl) was dosed per os twice daily from day 1-14. MRI was performed before BLM and at days 0, 7 and 14. After the last MRI acquisition, animals were euthanised and the lungs harvested for histological and quantitative real-time polymerase chain reaction (qRT-PCR) analyses. As evidenced longitudinally by MRI, the BLM-elicited lesions in the lungs of vehicle-treated mice progressed over time. In contrast, responses elicited by BLM did not progress in animals receiving PT100. Histology demonstrated significant less fibrosis in PT100- than in vehicle-treated, BLM-challenged mice. Significant correlation (R=0.91, P < 0.001, N=24) was found between the volumes of ELM-induced lesions detected in vivo by MRI and the collagen content determined histologically (picrosirius staining). FAP was overexpressed in the lungs of BLM-challenged mice. Upon PT100 treatment, FAP expression was reduced. Significant differences in the MMP-12, MIP-l alpha, and MCP-3 mRNA expression levels in the lungs of PT100-compared to vehicle-treated mice were also revealed by qRT-PCR. The IBA -1 level determined histologically was higher in the lungs of PT100- compared to vehicle-treated mice. Taken together, these observations suggest that treatment with PT100 in this murine model of pulmonary fibrosis had an anti-fibro-proliferative effect and increased macrophage activation.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available