4.8 Article

Fast response photogating in monolayer MoS2 phototransistors

Journal

NANOSCALE
Volume 13, Issue 38, Pages 16156-16163

Publisher

ROYAL SOC CHEMISTRY
DOI: 10.1039/d1nr03896f

Keywords

-

Funding

  1. Agencia Estatal de Investigacion of Spain [PID2019-106820RB, RTI2018-097180-B-100, PGC2018-097018-B-I00]
  2. Junta de Castilla y Leon [SA256P18, SA121P20]
  3. ERDF/FEDER
  4. MICINN (Spain) through the programme Juan de la Cierva-Incorporacion

Ask authors/readers for more resources

This study investigates the photoresponse of fully h-BN encapsulated monolayer (1L) MoS2 phototransistors and identifies a rapidly-responding photogating effect mechanism. By fitting the power dependence of this photogating effect and estimating the energy level of the traps involved, it is found that the traps are compatible with shallow traps in MoS2 caused by sulfur vacancies.
Two-dimensional transition metal dichalcogenide (TMD) phototransistors have been the object of intensive research during the last years due to their potential for photodetection. Photoresponse in these devices is typically caused by a combination of two physical mechanisms: the photoconductive effect (PCE) and photogating effect (PGE). In earlier literature for monolayer (1L) MoS2 phototransistors, PGE is generally attributed to charge trapping by polar molecules adsorbed to the semiconductor channel, giving rise to a very slow photoresponse. Thus, the photoresponse of 1L-MoS2 phototransistors at high-frequency light modulation is assigned to PCE alone. Here we investigate the photoresponse of a fully h-BN encapsulated monolayer (1L) MoS2 phototransistor. In contrast with previous understanding, we identify a rapidly-responding PGE mechanism that becomes the dominant contribution to photoresponse under high-frequency light modulation. Using a Hornbeck-Haynes model for the photocarrier dynamics, we fit the illumination power dependence of this PGE and estimate the energy level of the involved traps. The resulting energies are compatible with shallow traps in MoS2 caused by the presence of sulfur vacancies.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available