4.8 Article

Nascent chain dynamics and ribosome interactions within folded ribosome-nascent chain complexes observed by NMR spectroscopy

Journal

CHEMICAL SCIENCE
Volume 12, Issue 39, Pages 13120-13126

Publisher

ROYAL SOC CHEMISTRY
DOI: 10.1039/d1sc04313g

Keywords

-

Funding

  1. Wellcome Trust Investigator Award [206409/Z/17/Z]
  2. BBSRC [BB/T002603/1]
  3. Wellcome Trust [FC001029, 208400/Z/17/Z]
  4. Francis Crick Institute
  5. Cancer Research UK [FC001029]
  6. UK Medical Research Council [FC001029]
  7. BBSRC [BB/T002603/1] Funding Source: UKRI
  8. Wellcome Trust [208400/Z/17/Z, 206409/Z/17/Z] Funding Source: Wellcome Trust

Ask authors/readers for more resources

This study used solution-state NMR spectroscopy to measure transverse proton relaxation rates for methyl groups in folded ribosome-nascent chain complexes, revealing interactions between the nascent chain and ribosome surface driven predominantly by electrostatics. By observing changes in these interactions as subsequent domain emerges, the impact on free energy landscapes associated with co-translational folding process can be deduced.
The folding of many proteins can begin during biosynthesis on the ribosome and can be modulated by the ribosome itself. Such perturbations are generally believed to be mediated through interactions between the nascent chain and the ribosome surface, but despite recent progress in characterising interactions of unfolded states with the ribosome, and their impact on the initiation of co-translational folding, a complete quantitative analysis of interactions across both folded and unfolded states of a nascent chain has yet to be realised. Here we apply solution-state NMR spectroscopy to measure transverse proton relaxation rates for methyl groups in folded ribosome-nascent chain complexes of the FLN5 filamin domain. We observe substantial increases in relaxation rates for the nascent chain relative to the isolated domain, which can be related to changes in effective rotational correlation times using measurements of relaxation and cross-correlated relaxation in the isolated domain. Using this approach, we can identify interactions between the nascent chain and the ribosome surface, driven predominantly by electrostatics, and by measuring the change in these interactions as the subsequent FLN6 domain emerges, we may deduce their impact on the free energy landscapes associated with the co-translational folding process.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available