4.7 Article

Correspondence to: Dr Jakob Nikolas Kather, @jnkath For the Genomic Data Commons data portal see https://portal.gdc.cancer.gov See Online for appendix

Journal

LANCET DIGITAL HEALTH
Volume 3, Issue 10, Pages E654-E664

Publisher

ELSEVIER
DOI: 10.1016/S2589-7500(21)00133-3

Keywords

-

Funding

  1. German Cancer Aid
  2. German Federal Ministry of Health

Ask authors/readers for more resources

This study aimed to develop and validate deep learning-based classifiers to detect microsatellite instability and EBV status in gastric cancer tissue samples. The results showed that the deep learning-based classifier had high accuracy in detecting microsatellite instability and moderate effectiveness in detecting EBV status.
Background Response to immunotherapy in gastric cancer is associated with microsatellite instability (or mismatch repair deficiency) and Epstein-Barr virus (EBV) positivity. We therefore aimed to develop and validate deep learning based classifiers to detect microsatellite instability and EBV status from routine histology slides. Methods In this retrospective, multicentre study, we collected tissue samples from ten cohorts of patients with gastric cancer from seven countries (South Korea, Switzerland, Japan, Italy, Germany, the UK and the USA). We trained a deep learning-based classifier to detect microsatellite instability and EBV positivity from digitised, haematoxylin and eosin stained resection slides without annotating tumour containing regions. The performance of the classifier was assessed by within-cohort cross-validation in all ten cohorts and by external validation, for which we split the cohorts into a five-cohort training dataset and a five-cohort test dataset. We measured the area under the receiver operating curve (AUROC) for detection of microsatellite instability and EBV status. Microsatellite instability and EBV status were determined to be detectable if the lower bound of the 95% CI for the AUROC was above 0middot5. Findings Across the ten cohorts, our analysis included 2823 patients with known microsatellite instability status and 2685 patients with known EBV status. In the within-cohort cross-validation, the deep learning-based classifier could detect microsatellite instability status in nine of ten cohorts, with AUROCs ranging from 0middot597 (95% CI 0middot522-0middot737) to 0middot836 (0middot795-0middot880) and EBV status in five of eight cohorts, with AUROCs ranging from 0middot819 (0middot752-0middot841) to 0middot897 (0middot513-0middot966). Training a classifier on the pooled training dataset and testing it on the five remaining cohorts resulted in high classification performance with AUROCs ranging from 0middot723 (95% CI 0middot676-0middot794) to 0middot863 (0middot747-0middot969) for detection of microsatellite instability and from 0middot672 (0middot403-0middot989) to 0middot859 (0middot823-0middot919) for detection of EBV status. Interpretation Classifiers became increasingly robust when trained on pooled cohorts. After prospective validation, this deep learning-based tissue classification system could be used as an inexpensive predictive biomarker for immunotherapy in gastric cancer. Funding German Cancer Aid and German Federal Ministry of Health. Copyright (c) 2021 The Author(s). Published by Elsevier Ltd. This is an Open Access article under the CC BY 4.0 license.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available