4.7 Article

Control of cardiac alternans in an electromechanical model of cardiac tissue

Journal

COMPUTERS IN BIOLOGY AND MEDICINE
Volume 63, Issue -, Pages 108-117

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.compbiomed.2015.05.011

Keywords

Action potential; Alternans control; Electrical alternans; Mechanical perturbation; Nash-Panfilov model; Pacing periods

Funding

  1. Heart and Stroke Foundation of Canada

Ask authors/readers for more resources

Electrical alternations in cardiac action potential duration have been shown to be a precursor to arrhythmias and sudden cardiac death. Through the mechanism of excitation-contraction coupling, the presence of electrical alternans induces alternations in the heart muscle contractile activity. Also, contraction of cardiac tissue affects the process of cardiac electric wave propagation through the mechanism of the so-called mechanoelectrical feedback. Electrical excitation and contraction of cardiac tissue can be linked by an electromechanical model such as the Nash-Panfilov model. In this work, we explore the feasibility of suppressing cardiac alternans in the Nash-Panfilov model which is employed for small and large deformations. Several electrical pacing and mechanical perturbation feedback strategies are considered to demonstrate successful suppression of alternans on a one-dimensional cable. This is the first attempt to combine electrophysiologically relevant cardiac models of electrical wave propagation and contractility of cardiac tissue in a synergistic effort to suppress cardiac alternans. Numerical examples are provided to illustrate the feasibility and the effects of the proposed algorithms to suppress cardiac alternans. (C) 2015 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available