4.7 Article

Reviews and syntheses: Arctic fire regimes and emissions in the 21st century

Journal

BIOGEOSCIENCES
Volume 18, Issue 18, Pages 5053-5083

Publisher

COPERNICUS GESELLSCHAFT MBH
DOI: 10.5194/bg-18-5053-2021

Keywords

-

Funding

  1. Miami University, Ministry for Foreign Affairs of Finland (IBA Forest Fires) [1462/31/2019]
  2. Business Finland (BC Footprint) [1462/31/2019]
  3. ACRoBEAR project - Belmont Forum Climate, Environment and Health (CEH) Collaborative Research Action
  4. UK Natural Environment Research Council [NE/T013672/1]
  5. Arctic Monitoring and As-sessment Programme (AMAP)
  6. Russian Foundation for Basic Research (RFBR) [19-45-240004]
  7. Russian Foundation for Basic Research [20-05-00540]
  8. NASA's Weather and Data Analysis programme
  9. Climate Adaptation Research Fund from Environment and Climate Change Canada
  10. European Union
  11. Government of Krasnoyarsk Territory [20-05-00540]
  12. NERC [NE/T013672/1] Funding Source: UKRI

Ask authors/readers for more resources

In recent years, the pan-Arctic region has seen a rise in extreme fire seasons, driven by a combination of factors including climate change, lightning activity, human-caused ignition sources, and changing land management practices. Climate change is expected to further exacerbate Arctic fires by creating conditions conducive to more frequent and intense wildfires. Addressing these challenges will require adaptation in fire management strategies, particularly in the face of shifting agricultural land use and forest transitions in a warming climate.
In recent years, the pan-Arctic region has experienced increasingly extreme fire seasons. Fires in the northern high latitudes are driven by current and future climate change, lightning, fuel conditions, and human activity. In this context, conceptualizing and parameterizing current and future Arctic fire regimes will be important for fire and land management as well as understanding current and predicting future fire emissions. The objectives of this review were driven by policy questions identified by the Arctic Monitoring and Assessment Programme (AMAP) Working Group and posed to its Expert Group on Short-Lived Climate Forcers. This review synthesizes current understanding of the changing Arctic and boreal fire regimes, particularly as fire activity and its response to future climate change in the pan-Arctic have consequences for Arctic Council states aiming to mitigate and adapt to climate change in the north. The conclusions from our synthesis are the following. (1) Current and future Arctic fires, and the adjacent boreal region, are driven by natural (i.e. lightning) and human-caused ignition sources, including fires caused by timber and energy extraction, prescribed burning for landscape management, and tourism activities. Little is published in the scientific literature about cultural burning by Indigenous populations across the pan-Arctic, and questions remain on the source of ignitions above 70 degrees N in Arctic Russia. (2) Climate change is expected to make Arctic fires more likely by increasing the likelihood of extreme fire weather, increased lightning activity, and drier vegetative and ground fuel conditions. (3) To some extent, shifting agricultural land use and forest transitions from forest-steppe to steppe, tundra to taiga, and coniferous to deciduous in a warmer climate may increase and decrease open biomass burning, depending on land use in addition to climate-driven biome shifts. However, at the country and landscape scales, these relationships are not well established. (4) Current black carbon and PM2.5 emissions from wildfires above 50 and 65 degrees N are larger than emissions from the anthropogenic sectors of residential combustion, transportation, and flaring. Wildfire emissions have increased from 2010 to 2020, particularly above 60 degrees N, with 56% of black carbon emissions above 65 degrees N in 2020 attributed to open biomass burning - indicating how extreme the 2020 wildfire season was and how severe future Arctic wildfire seasons can potentially be. (5) What works in the boreal zones to prevent and fight wildfires may not work in the Arctic. Fire management will need to adapt to a changing climate, economic development, the Indigenous and local communities, and fragile northern ecosystems, including permafrost and peatlands. (6) Factors contributing to the uncertainty of predicting and quantifying future Arctic fire regimes include underestimation of Arctic fires by satellite systems, lack of agreement between Earth observations and official statistics, and still needed refinements of location, conditions, and previous fire return intervals on peat and permafrost landscapes. This review highlights that much research is needed in order to understand the local and regional impacts of the changing Arctic fire regime on emissions and the global climate, ecosystems, and pan-Arctic communities.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available