4.2 Article

Comparison of Lethal and Nonlethal Mouse Models of Orientia tsutsugamushi Infection Reveals T-Cell Population-Associated Cytokine Signatures Correlated with Lethality and Protection

Journal

Publisher

MDPI
DOI: 10.3390/tropicalmed6030121

Keywords

scrub typhus; Orientia tsutsugamushi; mouse model; T cells; cytokines; lethality; protection

Funding

  1. Military Infectious Disease Research Program (MIDRP) [WJ0009_10_NM]

Ask authors/readers for more resources

This study compared host immune responses in lethal and nonlethal murine models of O. tsutsugamushi infection, identifying specific cytokine signatures in the lethal model and predominance of single or double cytokine producers in the nonlethal model.
The antigenic diversity of Orientia tsutsugamushi as well as the interstrain difference(s) associated with virulence in mice impose the necessity to dissect the host immune response. In this study we compared the host response in lethal and non-lethal murine models of O. tsutsugamushi infection using the two strains, Karp (New Guinea) and Woods (Australia). The models included the lethal model: Karp intraperitoneal (IP) challenge; and the nonlethal models: Karp intradermal (ID), Woods IP, and Woods ID challenges. We monitored bacterial trafficking to the liver, lung, spleen, kidney, heart, and blood, and seroconversion during the 21-day challenge. Bacterial trafficking to all organs was observed in both the lethal and nonlethal models of infection, with significant increases in average bacterial loads observed in the livers and hearts of the lethal model. Multicolor flow cytometry was utilized to analyze the CD4+ and CD8+ T cell populations and their intracellular production of the cytokines IFN gamma, TNF, and IL2 (single, double, and triple combinations) associated with both the lethal and nonlethal murine models of infection. The lethal model was defined by a cytokine signature of double- (IFN gamma-IL2) and triple-producing (IL2-TNF-IFN gamma) CD4+ T-cell populations; no multifunctional signature was identified in the CD8+ T-cell populations associated with the lethal model. In the nonlethal model, the cytokine signature was predominated by CD4+ and CD8+ T-cell populations associated with single (IL2) and/or double (IL2-TNF) populations of producers. The cytokine signatures associated with our lethal model will become depletion targets in future experiments; those signatures associated with our nonlethal model are hypothesized to be related to the protective nature of the nonlethal challenges.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.2
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available