4.5 Article

UAV Assisted Spatiotemporal Analysis and Management of Bushfires: A Case Study of the 2020 Victorian Bushfires

Journal

FIRE-SWITZERLAND
Volume 4, Issue 3, Pages -

Publisher

MDPI
DOI: 10.3390/fire4030040

Keywords

bushfires; disaster management; unmanned aerial vehicles (UAVs); geographical information system (GIS); remote sensing; Victoria Australia

Ask authors/readers for more resources

Australia often faces devastating bushfires that impact its economy, landscape, forests, and wildlife. A holistic model using GIS, remote sensing, and UAVs is proposed to manage and mitigate these bushfires. The study shows the effectiveness of the methods used and proposes improvements for future disaster management.
Australia is a regular recipient of devastating bushfires that severely impacts its economy, landscape, forests, and wild animals. These bushfires must be managed to save a fortune, wildlife, and vegetation and reduce fatalities and harmful environmental impacts. The current study proposes a holistic model that uses a mixed-method approach of Geographical Information System (GIS), remote sensing, and Unmanned Aerial Vehicles (UAV)-based bushfire assessment and mitigation. The fire products of Visible Infrared Imager Radiometer Suite (VIIRS) and Moderate-resolution Imaging Spectroradiometer (MODIS) are used for monitoring the burnt areas within the Victorian Region due to the 2020 bushfires. The results show that the aggregate of 1500 m produces the best output for estimating the burnt areas. The identified hotspots are in the eastern belt of the state that progressed north towards New South Wales. The R-2 values between 0.91-0.99 indicate the fitness of methods used in the current study. A healthy z-value index between 0.03 to 2.9 shows the statistical significance of the hotspots. Additional analysis of the 2019-20 Victorian bushfires shows a widespread radius of the fires associated with the climate change and Indian Ocean Dipole (IOD) phenomenon. The UAV paths are optimized using five algorithms: greedy, intra route, inter route, tabu, and particle swarm optimization (PSO), where PSO search surpassed all the tested methods in terms of faster run time and lesser costs to manage the bushfires disasters. The average improvement demonstrated by the PSO algorithm over the greedy method is approximately 2% and 1.2% as compared with the intra route. Further, the cost reduction is 1.5% compared with the inter-route scheme and 1.2% compared with the intra route algorithm. The local disaster management authorities can instantly adopt the proposed system to assess the bushfires disasters and instigate an immediate response plan.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available