4.5 Article

Stronger proprioceptive BOLD-responses in the somatosensory cortices reflect worse sensorimotor function in adolescents with and without cerebral palsy

Journal

NEUROIMAGE-CLINICAL
Volume 32, Issue -, Pages -

Publisher

ELSEVIER SCI LTD
DOI: 10.1016/j.nicl.2021.102795

Keywords

Passive movement; SM1; SII; Kinesthesia; Hemiplegia; Diplegia

Categories

Funding

  1. Academy of Finland [296240, 304294, 307250, 3327288, 311877]
  2. Jane and Aatos Erkko Foundation
  3. Emil Aaltonen Foundation [602.274]
  4. Brain changes across the life-span profiling fund [311877]
  5. Academy of Finland (AKA) [304294] Funding Source: Academy of Finland (AKA)

Ask authors/readers for more resources

This study examined the relationship between proprioceptive responses and sensorimotor performance in individuals with CP compared to typically-developed peers. The CP group exhibited stronger proprioceptive responses in the sensorimotor cortices and worse sensorimotor performance for hands and feet. Stronger cortical activation to proprioceptive stimulation was associated with worse hand function across all participants.
Cerebral palsy (CP) is a motor disorder where the motor defects are partly due to impaired proprioception. We studied cortical proprioceptive responses and sensorimotor performance in adolescents with CP and their typically-developed (TD) peers. Passive joint movements were used to stimulate proprioceptors during functional magnetic resonance imaging (fMRI) session to quantify the proprioceptive responses whose associations to behavioral sensorimotor performance were also examined. Twenty-three TD (15 females, age: mean +/- standard deviation 14.2 +/- 2.4 years) and 18 CP (12 females, age: mean +/- standard deviation, 13.8 +/- 2.3 years; 12 hemiplegic, 6 diplegic) participants were included in this study. Participants' index fingers and ankles were separately stimulated at 3 Hz and 1 Hz respectively with pneumatic movement actuators. Regions-of-interest were used to quantify BOLD-responses from the primary sensorimotor (SM1) and secondary (SII) somatosensory cortices and were compared across the groups. Associations between responses strengths and sensorimotor performance measures were also examined. Proprioceptive responses were stronger for the individuals with CP compared to their TD peers in SM1 (p < 0.001) and SII (p < 0.05) cortices contralateral to their more affected index finger. The ankle responses yielded no significant differences between the groups. The CP group had worse sensorimotor performance for hands and feet (p < 0.001). Stronger responses to finger stimulation in the dominant SM1 (p < 0.001) and both dominant and non-dominant SII (p < 0.01, p < 0.001) cortices were associated with the worse hand sensorimotor performance across all participants. Worse hand function was associated with stronger cortical activation to the proprioceptive stimulation. This association was evident both in adolescents with CP and their typically-developed controls, thus it likely reflects both clinical factors and normal variation in the sensorimotor function. The specific mechanisms need to be clarified in future studies.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available