4.5 Article

Right-left ventricular shape variations in tetralogy of Fallot: associations with pulmonary regurgitation

Journal

Publisher

BMC
DOI: 10.1186/s12968-021-00780-x

Keywords

Cardiovascular magnetic resonance; Ventricular function; Atlases; Myocardial deformation; Tetralogy of Fallot

Funding

  1. National Institutes of Health (USA) [R01HL121754]
  2. AHA [19AIML35120034]
  3. National Institutes of Health NHLBI [1T32HL105373]
  4. Health Research Council of New Zealand [17/234]
  5. New Zealand Heart Foundation [1695]
  6. Inria-UTSW Medical Center Dallas Associated Team TOFMOD
  7. Ministry of Health of the Czech Republic [NV19-08-00071]
  8. National Medical Research Council of Singapore [NMRC/OFIRG/0018/2016]

Ask authors/readers for more resources

The study quantified the relationships between biventricular morphology and wall motion with pulmonary regurgitation in rTOF patients. Regional RV dilation, LV reduction, LV septal-lateral flattening, and increased RV strain were all associated with increased PRV.
Background Relationships between right ventricular (RV) and left ventricular (LV) shape and function may be useful in determining optimal timing for pulmonary valve replacement in patients with repaired tetralogy of Fallot (rTOF). However, these are multivariate and difficult to quantify. We aimed to quantify variations in biventricular shape associated with pulmonary regurgitant volume (PRV) in rTOF using a biventricular atlas. Methods In this cross-sectional retrospective study, a biventricular shape model was customized to cardiovascular magnetic resonance (CMR) images from 88 rTOF patients (median age 16, inter-quartile range 11.8-24.3 years). Morphometric scores quantifying biventricular shape at end-diastole and end-systole were computed using principal component analysis. Multivariate linear regression was used to quantify biventricular shape associations with PRV, corrected for age, sex, height, and weight. Regional associations were confirmed by univariate correlations with distances and angles computed from the models, as well as global systolic strains computed from changes in arc length from end-diastole to end-systole. Results PRV was significantly associated with 5 biventricular morphometric scores, independent of covariates, and accounted for 12.3% of total shape variation (p < 0.05). Increasing PRV was associated with RV dilation and basal bulging, in conjunction with decreased LV septal-lateral dimension (LV flattening) and systolic septal motion towards the RV (all p < 0.05). Increased global RV radial, longitudinal, circumferential and LV radial systolic strains were significantly associated with increased PRV (all p < 0.05). Conclusion A biventricular atlas of rTOF patients quantified multivariate relationships between left-right ventricular morphometry and wall motion with pulmonary regurgitation. Regional RV dilation, LV reduction, LV septal-lateral flattening and increased RV strain were all associated with increased pulmonary regurgitant volume. Morphometric scores provide simple metrics linking mechanisms for structural and functional alteration with important clinical indices.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available