4.6 Article

Deep brain stimulation for locomotion in incomplete human spinal cord injury (DBS-SCI): protocol of a prospective one-armed multi-centre study

Journal

BMJ OPEN
Volume 11, Issue 9, Pages -

Publisher

BMJ PUBLISHING GROUP
DOI: 10.1136/bmjopen-2020-047670

Keywords

rehabilitation medicine; neurological injury; spine; neurosurgery; clinical trials

Funding

  1. Department of Neurosurgery, University Hospital Zurich
  2. Spinal Cord Injury Center, Balgrist University Hospital
  3. Department of Neurology, University Hospital Zurich

Ask authors/readers for more resources

MLR-DBS has shown potential in enhancing functional recovery in SCI patients through a prospective study, with promising results suggesting safety and feasibility.
Introduction Spinal cord injury (SCI) is a devastating condition with immediate impact on the individual's health and quality of life. Major functional recovery reaches a plateau 3-4 months after injury despite intensive rehabilitative training. To enhance training efficacy and improve long-term outcomes, the combination of rehabilitation with electrical modulation of the spinal cord and brain has recently aroused scientific interest with encouraging results. The mesencephalic locomotor region (MLR), an evolutionarily conserved brainstem locomotor command and control centre, is considered a promising target for deep brain stimulation (DBS) in patients with SCI. Experiments showed that MLR-DBS can induce locomotion in rats with spinal white matter destructions of >85%. Methods and analysis In this prospective one-armed multi-centre study, we investigate the safety, feasibility, and therapeutic efficacy of MLR-DBS to enable and enhance locomotor training in severely affected, subchronic and chronic American Spinal Injury Association Impairment Scale C patients in order to improve functional recovery. Patients undergo an intensive training programme with MLR-DBS while being regularly followed up until 6 months post-implantation. The acquired data of each timepoint are compared with baseline while the primary endpoint is performance in the 6-minute walking test. The clinical trial protocol was written in accordance with the Standard Protocol Items: Recommendations for Interventional Trials checklist. Ethics and dissemination This first in-man study investigates the therapeutic potential of MLR-DBS in SCI patients. One patient has already been implanted with electrodes and underwent MLR stimulation during locomotion. Based on the preliminary results which promise safety and feasibility, recruitment of further patients is currently ongoing. Ethical approval has been obtained from the Ethical Committee of the Canton of Zurich (case number BASEC 2016-01104) and Swissmedic (10000316). Results will be published in peer-reviewed journals and presented at conferences.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available