4.6 Article

Amelioration of systemic inflammation via the display of two different decoy protein receptors on extracellular vesicles

Journal

NATURE BIOMEDICAL ENGINEERING
Volume 5, Issue 9, Pages 1084-+

Publisher

NATURE PORTFOLIO
DOI: 10.1038/s41551-021-00792-z

Keywords

-

Funding

  1. Swedish foundation of Strategic Research (SSF-IRC)
  2. ERC CoG
  3. Swedish Medical Research Council

Ask authors/readers for more resources

This study optimized the loading of two different therapeutic protein receptors onto extracellular vesicles through genetic engineering and protein moiety screening, leading to alleviation of inflammation-related diseases.
The loading of two different protein therapeutics onto extracellular vesicles can be optimized by genetically engineering the parent cells, as shown for extracellular vesicles displaying decoy receptors for two pro-inflammatory cytokines. Extracellular vesicles (EVs) can be functionalized to display specific protein receptors on their surface. However, surface-display technology typically labels only a small fraction of the EV population. Here, we show that the joint display of two different therapeutically relevant protein receptors on EVs can be optimized by systematically screening EV-loading protein moieties. We used cytokine-binding domains derived from tumour necrosis factor receptor 1 (TNFR1) and interleukin-6 signal transducer (IL-6ST), which can act as decoy receptors for the pro-inflammatory cytokines tumour necrosis factor alpha (TNF-alpha) and IL-6, respectively. We found that the genetic engineering of EV-producing cells to express oligomerized exosomal sorting domains and the N-terminal fragment of syntenin (a cytosolic adaptor of the single transmembrane domain protein syndecan) increased the display efficiency and inhibitory activity of TNFR1 and IL-6ST and facilitated their joint display on EVs. In mouse models of systemic inflammation, neuroinflammation and intestinal inflammation, EVs displaying the cytokine decoys ameliorated the disease phenotypes with higher efficacy as compared with clinically approved biopharmaceutical agents targeting the TNF-alpha and IL-6 pathways.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available