4.6 Article

Operando video microscopy of Li plating and re-intercalation on graphite anodes during fast charging

Journal

JOURNAL OF MATERIALS CHEMISTRY A
Volume 9, Issue 41, Pages 23522-23536

Publisher

ROYAL SOC CHEMISTRY
DOI: 10.1039/d1ta06023f

Keywords

-

Funding

  1. Office of Energy Efficiency and Renewable Energy (EERE) of the U.S. Department of Energy [DE-EE0008362]
  2. Bosch Energy Research Network (BERN) grant
  3. Phillips66 fellowship

Ask authors/readers for more resources

This study used plan-view operando video microscopy to investigate lithium plating on graphite anodes in high-energy-density batteries. The results show that lithium plating mainly occurs on graphite particles and is correlated with local minimum of graphite electrode potential. Galvanic corrosion currents are responsible for lithium re-intercalation and dead lithium formation.
Despite the demand for fast-charging lithium (Li)-ion batteries, high-energy-density batteries with thick graphite anodes are limited by Li plating when charging at >4C rates. In this work, plan-view operando video microscopy is applied on >3 mA h cm(-2) calendared graphite electrodes to study the dynamic evolution of local state-of-charge (SoC) and Li plating during fast charging. This technique allows for visualization of the spatial heterogeneity in SoC across the electrode, nucleation and growth of Li filaments, Li re-intercalation into graphite, dead Li formation, and SoC equilibration. The operando microscopy analysis is complemented by ex situ imaging of through-plane gradients in SoC to gain a three-dimensional visualization of spatial heterogeneity. We demonstrate that (1) Li plating preferentially nucleates on the graphite particles that lithiate fastest during fast charging; (2) the onset of Li plating correlates with the local minimum of the graphite electrode potential; (3) galvanic corrosion currents are responsible for Li re-intercalation, dead Li formation, and SoC re-equilibration after fast charging; and (4) electrochemical signatures during OCV rest or discharge are associated with Li re-intercalation into graphite. This work provides insight into the Li-graphite interactions at the composite electrode level and can be used to inform strategies to diagnose and mitigate Li plating during fast charging.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available