4.6 Article

Rational design of allosterically regulated toehold mediated strand displacement circuits for sensitive and on-site detection of small molecule metabolites

Journal

ANALYST
Volume 146, Issue 23, Pages 7144-7151

Publisher

ROYAL SOC CHEMISTRY
DOI: 10.1039/d1an01488a

Keywords

-

Funding

  1. Hong Kong Ph.D. Fellowship Scheme
  2. Conacyt-Mexico
  3. Research Grants Council of Hong Kong SAR Government [16301817, 16306218]

Ask authors/readers for more resources

The study utilized aTF-based biosensors to achieve rapid detection of uric acid in non-invasive salivary samples, enhancing signal enrichment and overcoming the negative impact of matrix effect by engineering a two-pass TMSD circuit. The improvements halved the turnaround time and enabled semi-quantitative detection in normal salivary UA levels, showing the potential of aTF-based biosensors in metabolite detection for health monitoring.
Development of small molecule biosensors enables rapid and de-centralized small molecule detection that meets the demands of routine health monitoring and rapid diagnosis. Among them, allosteric transcription factor (aTF)-based biosensors have shown potential in modular design of small molecule detection platforms due to their ligand-regulated DNA binding activity. Here, we expand the capabilities of a biosensor that leverages the aTF-based regulation of toehold-mediated strand displacement (TMSD) circuits for uric acid (UA) detection in non-invasive salivary samples by utilizing the UA-responsive aTF HucR. The impact of the low ligand affinity of the native HucR was addressed by engineering a two-pass TMSD circuit with in silico rational design. This combined strategy achieved enrichment of the output signal and overcame the negative impact of the matrix effect on the sensitivity and overall response of the biosensor when using real samples, which enabled semi-quantitative detection in the normal salivary UA levels. As well, enhancements provided by the two-pass design halved the turnaround time to less than 15 minutes. To sum up, the two-cycle DNA circuit design enabled aTF-based simple, rapid and one-step non-invasive salivary UA detection, showing its potential in metabolite detection for health monitoring.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available