4.5 Article

Vertical Variability in Bark Hydrology for Two Coniferous Tree Species

Journal

FRONTIERS IN FORESTS AND GLOBAL CHANGE
Volume 4, Issue -, Pages -

Publisher

FRONTIERS MEDIA SA
DOI: 10.3389/ffgc.2021.687907

Keywords

forest hydrology; bark water storage capacity; bark hygroscopicity; Picea abies (L; ) H; Karst; Abies alba (Mill; )

Ask authors/readers for more resources

Bark plays a crucial role in canopy ecohydrological processes, but its hydrological properties are often overlooked in research. Changes in physical properties and hydrology of bark along the stems of Norway spruce and silver fir trees were analyzed. While bark thickness and water storage capacity varied with tree height, bark density, porosity, and hygroscopicity remained relatively constant along the stems, contributing to our understanding of canopy water balance and colonization by bark surface organisms.
As the outermost layer of stems and branches, bark is exposed to the influence of atmospheric conditions, i.e., to changes in the air's relative humidity and wetting during storms. The bark is involved in water interception by tree canopies and stemflow generation, but bark-water relations are often overlooked in ecohydrological research and insufficiently understood. Relative to other canopy ecohydrological processes, little is known about vertical variation in bark properties and their effect on bark hydrology. Thus, the objective of this study was to analyze changes in physical properties (thickness, outer to total bark thickness ratio, density, and porosity) and hydrology (bark absorbability, bark water storage capacity, and hygroscopicity) vertically along stems of Norway spruce [Picea abies (L.) Karst.] and silver fir (Abies alba Mill.) trees. Our null hypotheses were that bark hydrology is constant both with tree height and across measured physical bark properties. We found that bark thickness and the ratio of outer-to-total bark thickness decreased with tree height for both species, and this was accompanied by an increase in the bark water storage capacity. In contrast, the bark's density, porosity, and hygroscopicity remained relatively constant along stems. These results inform ecohydrological theory on water storage capacity, stemflow initiation, and the connection between the canopy water balance and organisms that colonize bark surfaces.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available