4.5 Article

Genetic analysis of tropical maize inbred lines for resistance to maize lethal necrosis disease

Journal

EUPHYTICA
Volume 213, Issue 9, Pages -

Publisher

SPRINGER
DOI: 10.1007/s10681-017-2012-3

Keywords

Artificial inoculation; Combining ability; Diallel mating; Maize; MLN resistance

Funding

  1. Bill and Melinda Gates Foundation
  2. United States Agency for International Development (USAID)
  3. Howard G. Buffett Foundation
  4. CGIAR

Ask authors/readers for more resources

Maize lethal necrosis (MLN) disease is a recent outbreak in eastern Africa and has emerged as a significant threat to maize production in the region. The disease is caused by the co-infection of Maize chlorotic mottle virus and any member of potyviridae family. A total of 28 maize inbred lines with varying levels of tolerance to MLN were crossed in a half-diallel mating design, and the resulting 340 F-1 crosses and four commercial checks were evaluated under MLN artificial inoculation at Naivasha, Kenya in 2015 and 2016 using an alpha lattice design with two replications. The objectives of the study were to (i) investigate the magnitude of general combining ability variance (sigma(2)(GCA)) and specific combining ability variance (sigma(2)(GCA)) and their interaction with years; (ii) evaluate the efficiencies of GCA based prediction and hybrid performance by means of a cross-validation procedure; (iii) estimate trait correlations in the hybrids; and (iv) identify the MLN tolerant single cross hybrids to be used as female parents for three-way cross hybrids. Results of the combined analysis of variance revealed that both GCA and SCA effects were significant (P < 0.05) for all traits except for ear rot. For MLN scores at early and late stages, GCA effects were 2.5-3.5 times higher than SCA effects indicating that additive gene action is more important than non-additive gene action. The GCA based prediction efficiency for MLN resistance and grain yield accounted for 67-90% of the variations in the hybrid performance suggesting that GCA-based prediction can be proposed to predict MLN resistance and grain yield prior to field evaluation. Three parents, CKDHL120918, CML550, and CKLTI0227 with significant GCA effects for GY (0.61-1.21; P < 0.05) were the most resistant to MLN. Hybrids CKLTI0227 x CML550'', CKDHL120918 x CKLTI0138'', and CKDHL120918 x CKLTI0136'' ranked among the best performing hybrids with grain yield of 6.0-6.6 t/ha compared with mean yield of commercial check hybrids (0.6 t/ha). The MLN tolerant inbred lines and single cross hybrids identified in this study could be used to improve MLN tolerance in both public and private sector maize breeding programs in eastern Africa.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available