4.8 Article

Combined ionic liquid and supercritical carbon dioxide based dynamic extraction of six cannabinoids from Cannabis sativa L.

Journal

GREEN CHEMISTRY
Volume 23, Issue 24, Pages 10079-10089

Publisher

ROYAL SOC CHEMISTRY
DOI: 10.1039/d1gc03516a

Keywords

-

Funding

  1. TU Wien Bibliothek
  2. European Research Council (ERC) [864991]
  3. European Research Council (ERC) [864991] Funding Source: European Research Council (ERC)

Ask authors/readers for more resources

The study introduced the first application of IL-based dynamic supercritical CO2 extraction for cannabinoids from industrial hemp, optimizing process parameters and evaluating the impact of different ILs on extraction yield. The novel technique exhibited a synergistic effect, enabling efficient extraction of cannabinoids from industrial hemp and providing a reliable alternative to established extraction methods.
The potential of supercritical CO2 and ionic liquids (ILs) as alternatives to traditional extraction of natural compounds from plant material is of increasing importance. Both techniques offer several advantages over conventional extraction methods. These two alternatives have been separately employed on numerous ocassions, however, until now, they have never been combined for the extraction of secondary metabolites from natural sources, despite properties that complement each other perfectly. Herein, we present the first application of an IL-based dynamic supercritical CO2 extraction of six cannabinoids (CBD, CBDA, Delta(9)-THC, THCA, CBG and CBGA) from industrial hemp (Cannabis sativa L.). Various process parameters were optimized, i.e., IL-based pre-treatment time and pre-treatment temperature, as well as pressure and temperature during supercritical fluid extraction. In addition, the impact of different ILs on cannabinoid extraction yield was evaluated, namely, 1-ethyl-3-methylimidazolium acetate, choline acetate and 1-ethyl-3-methylimidazolium dimethylphosphate. This novel technique exhibits a synergistic effect that allows the solvent-free acquisition of cannabinoids from industrial hemp, avoiding further processing steps and the additional use of resources. The newly developed IL-based supercritical CO2 extraction results in high yields of the investigated cannabinoids, thus, demonstrating an effective and reliable alternative to established extraction methods. Ultimately, the ILs can be recycled to reduce costs and to improve the sustainability of the developed extraction process.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available