4.6 Article

Antarctic snow-covered sea ice topography derivation from TanDEM-X using polarimetric SAR interferometry

Journal

CRYOSPHERE
Volume 15, Issue 12, Pages 5323-5344

Publisher

COPERNICUS GESELLSCHAFT MBH
DOI: 10.5194/tc-15-5323-2021

Keywords

-

Ask authors/readers for more resources

This study successfully demonstrates the accurate detection and correction of sea ice topography using single-pass interferometric synthetic aperture radar (InSAR) data. A two-layer-plus-volume model is proposed to represent the vertical structure and scattering mechanisms of sea ice, achieving excellent results in topographic retrieval.
Single-pass interferometric synthetic aperture radar (InSAR) enables the possibility for sea ice topographic retrieval despite the inherent dynamics of sea ice. InSAR digital elevation models (DEMs) are measuring the radar scattering center height. The height bias induced by the penetration of electromagnetic waves into snow and ice leads to inaccuracies of the InSAR DEM, especially for thick and deformed sea ice with snow cover. In this study, an elevation difference between the satellite-measured InSAR DEM and the airborne-measured optical DEM is observed from a coordinated campaign over the western Weddell Sea in Antarctica. The objective is to correct the penetration bias and generate a precise sea ice topographic map from the single-pass InSAR data. With the potential of retrieving sea ice geophysical information by the polarimetric-interferometry (Pol-InSAR) technique, a two-layer-plus-volume model is proposed to represent the sea ice vertical structure and its scattering mechanisms. Furthermore, a simplified version of the model is derived, to allow its inversion with limited a priori knowledge, which is then applied to a topographic retrieval scheme. The experiments are performed across four polarizations: HH, VV, Pauli 1 (HH + VV), and Pauli 2 (HH-VV). The model-retrieved performance is validated with the optically derived DEM of the sea ice topography, showing an excellent performance with root-mean-square error as low as 0.26 m in Pauli-1 (HH + VV) polarization.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available