4.6 Article

Estimation of Gaussian random displacement using non-Gaussian states

Journal

PHYSICAL REVIEW A
Volume 104, Issue 6, Pages -

Publisher

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevA.104.062601

Keywords

-

Funding

  1. Japan Science and Technology Agency (Moonshot RD) [JPMJMS2064]
  2. Japan Society for the Promotion of Science KAKENHI [18H05207, 21J11615]
  3. UTokyo Foundation
  4. Grants-in-Aid for Scientific Research [21J11615] Funding Source: KAKEN

Ask authors/readers for more resources

This study focuses on the estimation and error correction of displacements in continuous-variable quantum information processing using non-Gaussian states. Analysis of complex GKP states and experimentally feasible single-photon states reveals the importance of non-Gaussianity for displacement estimation, demonstrating that non-Gaussian states can surpass the lower bound achieved with Gaussian operations.
In continuous-variable quantum information processing, quantum error correction of Gaussian errors requires simultaneous estimation of both quadrature components of displacements in phase space. However, quadrature operators x and p are noncommutative conjugate observables, whose simultaneous measurement is prohibited by the uncertainty principle. Gottesman-Kitaev-Preskill (GKP) error correction deals with this problem using complex non-Gaussian states called GKP states. On the other hand, simultaneous estimation of displacement using experimentally feasible non-Gaussian states has not been well studied. In this paper, we consider a multiparameter estimation problem of displacements assuming an isotropic Gaussian prior distribution and allowing postselection of measurement outcomes. We derive a lower bound for the estimation error when only Gaussian operations are used and show that even simple non-Gaussian states such as single-photon states can beat this bound. Based on Ghosh's bound, we also obtain a lower bound for the estimation error when the maximum photon number of the input state is given. Our results reveal the role of non-Gaussianity in the estimation of displacements and pave the way toward the error correction of Gaussian errors using experimentally feasible non-Gaussian states.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available