4.6 Article

Influence of Compressive Strength of Concrete on Shear Strengthening of Reinforced Concrete Beams with Near Surface Mounted Carbon Fiber-Reinforced Polymer

Journal

BUILDINGS
Volume 11, Issue 11, Pages -

Publisher

MDPI
DOI: 10.3390/buildings11110563

Keywords

near-surface mounted; carbon fiber; concrete strength; finite element analysis

Ask authors/readers for more resources

This study investigated the effect of using NSM-CFRP on shear strengthening of rectangle beams with different concrete strengths. The experimental and FEA results showed that NSM-CFRP can increase shear capacity and influence the failure mode of beams.
This paper investigates the effect of using near-surface mounted carbon fiber-reinforced polymer (NSM-CFRP) on the shear strengthening of rectangle beams with low strength concrete (f & PRIME;c = 17 MPa), medium strength concrete (f & PRIME;c = 32 MPa), and high strength concrete (f & PRIME;c = 47 MPa). The experimental program was performed by installing NSM-CFRP strips vertically in three different configurations: aligned with the internal stirrups, one vertical NSM-CFRP strip between every two internal stirrups, and two vertical NSM-CFRP strips between every two internal stirrups. All tested beams were simply supported beams and tested under a three-point loading test. The experimental results were compared with the theoretical capacities that were calculated according to the ACI 440.2R-17 and finite element analysis (FEA) that was conducted using ABAQUS software to simulate the behavior of all beams. The experimental results indicated that using NSM-CFRP limited the failure mode of all beams to pure shear failure with no debonding or rapture of the carbon strips. Moreover, the use of NSM-CFRP proved its efficiency by increasing the shear capacity of all beams by a range of 4% to 66%, in which the best enhancement was recorded for the case of using two unaligned NSM-CFRP strips. In general, the experimental shear capacities increased with the increase in the compressive strength of all beams. On the other hand, the ACI 440.2R-17 was conservative in predicting the theoretical shear capacities, and the FEA results agreed well with the experimental results.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available