4.5 Article

Transcatheter Heart Valve Implantation in Bicuspid Patients with Self-Expanding Device

Journal

BIOENGINEERING-BASEL
Volume 8, Issue 7, Pages -

Publisher

MDPI
DOI: 10.3390/bioengineering8070091

Keywords

transcatheter aortic valve implantation; bicuspid aortic valve; finite-element analysis; fluid-solid interaction

Ask authors/readers for more resources

This study conducted numerical simulations of TAVI in patients with bicuspid aortic valve (BAV) to evaluate the feasibility and risks of transcatheter heart valve (THV) implantation. Through structural mechanics and fluid-solid interaction analysis, it was found that THV exhibited slight asymmetric expansion and potential paravalvular leakage risk in BAV anatomy.
Bicuspid aortic valve (BAV) patients are conventionally not treated by transcathether aortic valve implantation (TAVI) because of anatomic constraint with unfavorable outcome. Patient-specific numerical simulation of TAVI in BAV may predict important clinical insights to assess the conformability of the transcathether heart valves (THV) implanted on the aortic root of members of this challenging patient population. We aimed to develop a computational approach and virtually simulate TAVI in a group of n.6 stenotic BAV patients using the self-expanding Evolut Pro THV. Specifically, the structural mechanics were evaluated by a finite-element model to estimate the deformed THV configuration in the oval bicuspid anatomy. Then, a fluid-solid interaction analysis based on the smoothed-particle hydrodynamics (SPH) technique was adopted to quantify the blood-flow patterns as well as the regions at high risk of paravalvular leakage (PVL). Simulations demonstrated a slight asymmetric and elliptical expansion of the THV stent frame in the BAV anatomy. The contact pressure between the luminal aortic root surface and the THV stent frame was determined to quantify the device anchoring force at the level of the aortic annulus and mid-ascending aorta. At late diastole, PVL was found in the gap between the aortic wall and THV stent frame. Though the modeling framework was not validated by clinical data, this study could be considered a further step towards the use of numerical simulations for the assessment of TAVI in BAV, aiming at understanding patients not suitable for device implantation on an anatomic basis.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available