3.8 Proceedings Paper

Temperature level optimization for low-grade thermal networks using the exergy method

Ask authors/readers for more resources

Low-temperature thermal networks allow for the utilization of additional renewable and recovered energy sources, but decentralized heat pumps are needed, which can impact overall electricity consumption. Finding the optimal network temperature is crucial for minimizing thermal and electrical consumption while integrating the maximum amount of renewable energy sources.
Low-temperature thermal networks open the field for additional renewable and recovered energy sources to be used. The exploitation of low exergy level resources requires decentralized heat pumps having a significant impact on the network's overall electricity consumption. Thus, a compromise must be found in order to minimize thermal and electrical consumption while integrating a maximum of renewable energy sources. This optimum is governed by the temperature level of the network. This paper aims at determining the optimal network temperature using the exergy criterion. The exergy method is detailed and applied to the multi-source network blueCAD (Fribourg) fed by geothermal energy, and FriCAD, a high temperature district heating network. The optimum temperature decreases as the share of geothermal energy in the production increases. For blueCAD, it ranges from 40 to 55 degrees C.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

3.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available