4.7 Article

The influence of particle size and feedstock of biochar on the accumulation of Cd, Zn, Pb, and As by Brassica chinensis L.

Journal

ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH
Volume 24, Issue 28, Pages 22340-22352

Publisher

SPRINGER HEIDELBERG
DOI: 10.1007/s11356-017-9854-z

Keywords

Heavy metal; Biochar; Particle size; Accumulation; Brassica chinensis L

Funding

  1. National Natural Science Foundation of China [41501336]
  2. Beijing Outstanding Talent Training Project [2015000020060G141]
  3. Agricultural Science and Technology Project of Beijing [20140109]
  4. Beijing Academy of Agriculture and Forestry Sciences [KJCX20170411]

Ask authors/readers for more resources

Biochar produced from rice straw (RC) and maize stalk (MC) was amended to the heavy metal-contaminated soil to investigate the effects of different biochar feedstock and particle size (fine, moderate, coarse) on the accumulation of Cd, Zn, Pb, and As in Brassica chinensis L. (Chinese cabbage). The concentrations of Cd, Zn, and Pb in shoot were decreased by up to 57, 75, and 63%, respectively, after biochar addition (4%). Only MC decreased As concentration in B. chinensis L. shoots by up to 61%. Biochar treatments significantly decreased NH4NO3-extractable concentrations of Cd, Zn, and Pb in soil by 47-62, 33-66, and 38-71%, respectively, yet increased that of As by up to 147%. Amendment of RC was more effective on immobilizing Cd, Zn, and Pb, but mobilizing soil As, than MC. A decrease in biochar particle size greatly contributed to the immobilization of Cd, Zn, and Pb in soil and thereby the reduction of their accumulations in B. chinensis L. shoots, especially RC. Increases in soil pH and extractable P induced by biochar addition contributed to the sequestration of Cd, Zn, and Pb and the mobilization of As. Shoot biomass, root biomass, and root system of B. chinensis L. were enhanced with biochar amendments, especially RC. This study indicates that biochar addition could potentially decrease Cd, Zn, Pb, and As accumulations in B. chinensis L., and simultaneously increase its yield. A decrease in biochar particle size is favorable to improve the immobilization of heavy metals (except As). The reduction in Cd, Zn, Pb, and As levels in B. chinensis L. shoots by biochar amendment could be mainly attributed to a function of heavy metal mobility in soil, plant translocation factor, and root uptake.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available