4.8 Article

Mechanistic Study of the Validity of Using Hydroxyl Radical Probes To Characterize Electrochemical Advanced Oxidation Processes

Journal

ENVIRONMENTAL SCIENCE & TECHNOLOGY
Volume 51, Issue 4, Pages 2355-2365

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/acs.est.6b05513

Keywords

-

Funding

  1. National Science Foundation [CBET-1159764, CBET-1453081]
  2. Div Of Chem, Bioeng, Env, & Transp Sys
  3. Directorate For Engineering [1453081] Funding Source: National Science Foundation

Ask authors/readers for more resources

The detection of hydroxyl radicals (OH center dot) is typically accomplished by using reactive probe molecules, but prior studies have not thoroughly investigated the suitability of these probes for use in electrochemical advanced oxidation processes (EAOPs), due to the neglect of alternative reaction mechanisms. In this study, we investigated the suitability of four OH center dot probes (coumarin, p-chlorobenzoic acid, terephthalic acid, and p-benzoquinone) for use in EAOPs. Experimental results indicated that both coumarin and p-chlorobenzoic acid are oxidized via direct electron transfer reactions, while p-benzoquinone and terephthalic acid are not. Coumarin oxidation to form the OH center dot adduct product 7-hydroxycoumarin was found at anodic potentials lower than that necessary for OH center dot formation. Density functional theory (DFT) simulations found a thermodynamically favorable and non-OH center dot mediated pathway for 7-hydroxycoumarin formation, which is activationless at anodic potentials > 2.10 V/SHE. DFT simulations also provided estimates of E degrees values for a series of OH center dot probe compounds, which agreed with voltammetry results. Results from this study indicated that terephthalic acid is the most appropriate OH center dot probe compound for the characterization of electrochemical and catalytic systems.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available