4.8 Article

Transcriptional Activity of Arsenic-Reducing Bacteria and Genes Regulated by Lactate and Biochar during Arsenic Transformation in Flooded Paddy Soil

Journal

ENVIRONMENTAL SCIENCE & TECHNOLOGY
Volume 52, Issue 1, Pages 61-70

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/acs.est.7b03771

Keywords

-

Funding

  1. Guangdong Key Technologies R D Program [2015B020207001]
  2. National Science Foundation of China [41330857, 41471216]
  3. High-Level Leading Talent Introduction Program of GDAS [2016GDASRC-0103]
  4. SPICC Program (Scientific Platform and Innovation Capability Construction Program of GDAS)
  5. National Key Basic Research Program [2016YFD0800701]
  6. National Key Technology R & G Program of China [2015BAD05B05, 2015A030313752]
  7. Guangdong Natural Science Funds for Distinguished Young Scholars [2017A030306010]

Ask authors/readers for more resources

Organic substrates and biochar are important in controlling arsenic release from sediments and soils; however, little is known about their. impact on arsenic-reducing bacteria and genes during arsenic transformation in flooded paddy soils. In this study, microcosm experiments were established to profile transcriptional activity of As(V)-respiring gene (arrA) and arsenic resistance gene (arsC) as well as the associated bacteria regulated by lactate and/or biochar in anaerobic arsenic-contaminated paddy soils. Chemical analyses revealed that lactate as the organic substrate stimulated microbial reduction of As(V) and Fe(III), which was simultaneously promoted by lactate+biochar, due to biochar's electron shuttle function that facilitates electron transfer from bacteria to As(V)/Fe(III). Sequencing and phylogenetic analyses demonstrated that both arrA closely associated with Geobacter (>60%, number of identical sequences/number of the total sequences) and arsC related to Enterobacteriaceae (>99%) were selected by lactate and lactate+biochar. Compared with the lactate microcosms, transcriptions of the bacterial 16S rRNA gene, Geobacter spp., and Geobacter arrA and arsC genes were increased in the lactate+biochar microcosms, where transcript abundances of Geobacter and Geobacter arrA closely tracked with dissolved As(V) concentrations. Our findings indicated that lactate and biochar in flooded paddy soils can stimulate the active As(V)-respiring bacteria Geobacter species for arsenic reduction and release, which probably increases arsenic bioavailability to rice plants.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available