4.8 Article

Enzymatic Purification of Microplastics in Environmental Samples

Journal

ENVIRONMENTAL SCIENCE & TECHNOLOGY
Volume 51, Issue 24, Pages 14283-14292

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/acs.est.7b03055

Keywords

-

Funding

  1. German Federal Ministry of Education and Research
  2. Alfred Wegener Institute - Helmholtz Centre for Polar and Marine Research (AWI) [03F0631A, 03F0734A]
  3. Bavarian State Ministry of the Environment and Consumer protection
  4. ASA Spezialenzyme GmbH

Ask authors/readers for more resources

Micro-Fourier transform infrared (micro-FTIR) spectroscopy and Raman spectroscopy enable the reliable identification and quantification of microplastics (MPs) in the lower micron range. Since concentrations of MPs in the environment are usually low, the large sample volumes required for these techniques lead to an excess of coenriched organic or inorganic materials. While inorganic materials can be separated from MPs Wing density separation, the organic fraction impedes the ability to conduct reliable analyses. Hence, the purification of MPs from organic materials is crucial prior to conducting an identification via spectroscopic techniques. Strong, acidic or alkaline treatments bear the danger of degrading sensitive synthetic polymers. We suggest an alternative method, which uses a series of technical grade enzymes for purifying MPs in environmental samples. A basic enzymatic purification protocol (BEPP) proved to be efficient while reducing 98.3 +/- 0.1% of the sample matrix in surface water samples. After showing a high recovery rate (84.5 +/- 3.3%), the BEPP was successfully applied to environmental samples from the North Sea where numbers of MPs range from 0.05 to 4.42 items m(-3). Experiences with different environmental sample matrices were considered in an improved and universally applicable version of the BEPP, which is suitable for focal plane array detector (FPA)-based micro-FTIR analyses of water, wastewater, sediment, biota, and food samples.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available