4.8 Article

Simulating Aqueous-Phase Isoprene-Epoxydiol (IEPOX) Secondary Organic Aerosol Production During the 2013 Southern Oxidant and Aerosol Study (SOAS)

Journal

ENVIRONMENTAL SCIENCE & TECHNOLOGY
Volume 51, Issue 9, Pages 5026-5034

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/acs.est.6b05750

Keywords

-

Funding

  1. Internship/Research Participation Program at the Office of Research and Development, U.S. EPA
  2. NSF [AGS-1546136]
  3. U.S. EPA [R835410, 835404]
  4. Electric Power Research Institute (EPRI)
  5. National Oceanic and Atmospheric Administration (NOAA) Climate Program Office's AC4 program [NA13OAR4310064]
  6. Div Atmospheric & Geospace Sciences
  7. Directorate For Geosciences [1546136] Funding Source: National Science Foundation
  8. EPA [673401, R835410] Funding Source: Federal RePORTER

Ask authors/readers for more resources

The lack of statistically robust relationships between IEPOX (isoprene epoxydiol)-derived SOA (IEPOX SOA) and aerosol liquid water and pH observed during the 2013 Southern Oxidant and Aerosol Study (SOAS) emphasizes the importance of modeling the whole system to understand the controlling factors governing IEPOX SOA formation. We present a mechanistic modeling investigation predicting IEPOX SOA based on Community Multiscale Air Quality (CMAQ) model algorithms and a recently introduced photochemical box model, simpleGAMMA. We aim to (1) simulate IEPOX SOA tracers from the SOAS Look Rock ground site, (2) compare the two model formulations, (3) determine the limiting factors in IEPOX SOA formation, and (4) test the impact of a hypothetical sulfate reduction scenario on IEPOX SOA. The estimated IEPOX SOA mass variability is in similar agreement (r(2) similar to 0.6) with measurements. Correlations of the estimated and measured IEPOX SOA tracers with observed aerosol surface area (r(2) similar to 0.5-0.7), rate of particle-phase reaction (r(2) similar to 0.4-0.7), and sulfate (r(2) similar to 0.4-0.5) suggest an important role of sulfate in tracer formation via both physical and chemical mechanisms. A hypothetical 25% reduction of sulfate results in similar to 70% reduction of IEPOX SOA formation, reaffirming the importance of aqueous phase chemistry in IEPOX SOA production.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available