4.8 Article

Inhibiting Mercury Re-emission and Enhancing Magnesia Recovery by Cobalt-Loaded Carbon Nanotubes in a Novel Magnesia Desulfurization Process

Journal

ENVIRONMENTAL SCIENCE & TECHNOLOGY
Volume 51, Issue 19, Pages 11346-11353

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/acs.est.7b03364

Keywords

-

Funding

  1. National Key Research and Development Program of China [2017YFCO210201, 2016YFCO204102]
  2. National Natural Science Foundation of China [51378204, 51379077]
  3. Natural Science Foundation of Hebei Province [E2016502096]

Ask authors/readers for more resources

Mercury re-emission, because of the reduction of Hg2+ to form Hg-0 by sulfite, has become a great concern in the desulfurization process. Lowering the concentrations of Hg2+ and sulfite in the desulfurization slurry can retard the Hg-0 formation and, thus, mitigate mercury re-emission. To that end, cobalt-based carbon nanotubes (Co-CNTs) were developed for the simultaneous Hg2+ removal and sulfite oxidation in this work. Furthermore, the thermodynamics and kinetics of the Hg2+ adsorption and effect of Hg2+ adsorption on catalytic activity of Co-CNTs were investigated. Experimental results revealed that the Co-CNTs not only accelerated sulfite oxidation to enable the recovery of desulfurization by-products but also acted as an effective adsorbent of Hg2+ removal. The Hg2+ adsorption rate mainly depended on the structure of the adsorption material regardless of the cobalt loading and morphological distribution. The catalytic activity of the Co-CNTs for sulfite oxidation was not significantly affected due to the Hg2+ adsorption. Additionally, the isothermal adsorption behavior was well-fitted to the Langmuir model with an adsorption capacity of 166.7 mg/g. The mercury mass balance analysis revealed that the Hg-0 re-emission was decreased by 156% by adding 2.0 g/L of Co-CNTs. These results can be used as a reference for the simultaneous removal of multiple pollutants in the wet-desulfurization process.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available