4.8 Article

Enzymatic Hydrolysis of Polyester Thin Films at the Nanoscale: Effects of Polyester Structure and Enzyme Active-Site Accessibility

Journal

ENVIRONMENTAL SCIENCE & TECHNOLOGY
Volume 51, Issue 13, Pages 7476-7485

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/acs.est.7b01330

Keywords

-

Funding

  1. Joint Research Network on Advanced Materials and Systems (JONAS) program of BASF SE and ETH Zurich
  2. Federal Ministry of Science, Research and Economy (BMWFW)
  3. Federal Ministry of Traffic, Innovation and Technology (bmvit)
  4. Styrian Business Promotion Agency SFG
  5. Standortagentur Tirol
  6. Government of Lower Austria
  7. Business Agency Vienna through the COMET- Program Austrian Research Promotion Agency FFG

Ask authors/readers for more resources

Biodegradable polyesters have a large potential to replace persistent polymers in numerous applications and to thereby reduce the accumulation of plastics in the environment. Ester hydrolysis by extracellular carboxylesterases is considered the rate-limiting step in polyester biodegradation. In this work, we systematically investigated the effects of polyester and carboxylesterase structure on the hydrolysis of nanometer-thin polyester films using a quartz-crystal microbalance with dissipation monitoring. Hydrolyzability increased with increasing polyester-chain flexibility as evidenced from differences in the hydrolysis rates and extents of aliphatic polyesters varying in the length of their dicarboxylic acid unit and of poly(butylene adipate-co-terephthalate) (PBAT) polyesters varying in their terephthalate-to-adipate ratio by Rhizopus oryzae lipase and Fusarium solani cutinase. Nanoscale nonuniformities in the PBAT films affected enzymatic hydrolysis and were likely caused by domains with elevated terephthalate contents that impaired enzymatic hydrolysis. Yet, the cutinase completely hydrolyzed all PBAT films, including films with a terephthalate-to-adipate molar ratio of one, under environmentally relevant conditions (pH 6, 20 degrees C). A comparative analysis of the hydrolysis of two model polyesters by eight different carboxylesterases revealed increasing hydrolysis with increasing accessibility of the enzyme active site. Therefore, this work highlights the importance of both polyester and carboxylesterase structure to enzymatic polyester hydrolysis.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available