4.8 Article

Identification of Emerging Brominated Chemicals as the Transformation Products of Tetrabromobisphenol A (TBBPA) Derivatives in Soil

Journal

ENVIRONMENTAL SCIENCE & TECHNOLOGY
Volume 51, Issue 10, Pages 5434-5444

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/acs.est.7b01071

Keywords

-

Funding

  1. National Natural Science Foundation of China [21377155, 21621064]
  2. Strategic Priority Research Program of the Chinese Academy of Sciences [XDB14010400]
  3. China Postdoctoral Science Foundation [2016M602210]

Ask authors/readers for more resources

In contrast to the extensive investigation already conducted on tetrabromobisphenol A (TBBPA), the metabolism of TBBPA derivatives is still largely unknown. In this paper, we characterized unknown brominated compounds detected in 84 soil samples collected from sites around three brominated flame retardant production plants to determine possible transformation products of TBBPA derivatives. In addition to tribromobisphenol A (TriBBPA), dibromobisphenol A (DBBPA), and TBBPA, six novel transformation products, TriBBPA mono(allyl ether) (Tr1BBPA-MAE), DBBPA-MAE, hydroxyl TriBBPA-MAE, TBBPA mono(2-bromo-3-hydroxypropyl ether) (TBBPA-MBHPE), TBBPA mono(2,3-dihydroxypropyl ether) (TBBPA-MDHPE), and TBBPA mono(3-hydroxypropyl ether) (TBBPA-MHPE) were identified. The detection frequencies of these identified chemicals in soil samples ranged from 17% to 89%, indicating the widespread presence of the transformation products. To uncover the possible TBBPA derivative transformation pathways involved, super-reduced vitamin B12 (cyanocobalamin, (CCAs)) was used to treat TBBPA derivative and transformation products in this process were characterized. To our knowledge, this is the first study examining the transformation of TBBPA derivatives and the first to report several novel associated TBBPA and bisphenol A derivatives as transformation products. Our research suggests that ether bond breakage and debromination contribute to the transformation of TBBPA derivatives and the existence of the novel transformation products. These data provide new insights into the fate of TBBPA derivatives in environmental compartments.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available