4.7 Article

Detecting spatiotemporal changes of peak foliage coloration in deciduous and mixedforests across the Central and Eastern United States

Journal

ENVIRONMENTAL RESEARCH LETTERS
Volume 12, Issue 2, Pages -

Publisher

IOP Publishing Ltd
DOI: 10.1088/1748-9326/aa5b3a

Keywords

peak coloration; long-term trend; satellite data; flux data; field observation; temperature; Singular Spectrum Analysis

Funding

  1. NASA [NNX15AB96A, NNX14AJ32G]
  2. NOAA [JPSS_ PGRR2_14]
  3. NASA [NNX15AB96A, 808397] Funding Source: Federal RePORTER

Ask authors/readers for more resources

The timing of fall foliage coloration, especially peak coloration, is of great importance to the climate change research community as it has implications for carbon storage in forests. However, its long-term variation and response to climate change are poorly understood. To address this issue, we examined the long-term trends and breakpoints in satellite derived peak coloration onset from 1982 to 2014 using an innovative approach that combines Singular Spectrum Analysis (SSA) with Breaks for Additive Seasonal and Trend (BFAST). The peak coloration trend was then evaluated using both field foliage coloration observations and flux tower measurements. Finally, interannual changes in peak coloration onset were correlated with temperature and precipitation variation. Results showed that temporal trends in satellite-derived peak coloration onset were comparable with both field observations and flux tower measurements of gross primary productivity. Specifically, a breakpoint in long-term peak coloration onset was detected in 25% of pixels which were mainly distributed at latitudes north of 37 degrees N. The breakpoint tended to occur between 1998 and 2004. Peak coloration onset was delayed before the breakpoint while it was transformed to an early trend after the breakpoint in nearly all pixels. The remaining 75% of pixels exhibited monotonic trends, 35% of which revealed a late trend and 40% an early trend. The results indicate that the onset of peak coloration experienced a late trend during the 1980s and 1990s in most deciduous and mixed forests. However, the trend was reversed during the most recent decade when the timing of peak coloration became earlier. The onset of peak coloration was significantly correlated with late summer and autumn temperature in 55.5% of pixels from 1982 to 2014. This pattern of temperature impacts was also verified using field observations and flux tower measurements. In the remaining 44.5% of pixels, 12.2% of pixels showed significantly positive correlation between the onset of peak coloration and cumulative precipitation during late summer and autumn period from 1982 to 2014. Our findings can improve understanding of the impact of changes in autumn phenology on carbon uptake in forests, which in turn facilitate more reliable measures of carbon dynamics in vegetation-climate interactions models.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available