3.8 Proceedings Paper

TinyOL: TinyML with Online-Learning on Microcontrollers

Ask authors/readers for more resources

TinyML is a growing research area focusing on democratizing deep learning for microcontrollers, but current solutions lack flexibility due to static models and limited adaptability. To address these issues, the innovative TinyOL system enables incremental on-device training on streaming data, showing effectiveness and feasibility for constrained IoT devices.
Tiny machine learning (TinyML) is a fast-growing research area committed to democratizing deep learning for all-pervasive microcontrollers (MCUs). Challenged by the constraints on power, memory, and computation, TinyML has achieved significant advancement in the last few years. However, the current TinyML solutions are based on batch/offline setting and support only the neural network's inference on MCUs. The neural network is first trained using a large amount of pre-collected data on a powerful machine and then flashed to MCUs. This results in a static model, hard to adapt to new data, and impossible to adjust for different scenarios, which impedes the flexibility of the Internet of Things (IoT). To address these problems, we propose a novel system called TinyOL (TinyML with Online-Learning), which enables incremental on-device training on streaming data. TinyOL is based on the concept of online learning and is suitable for constrained IoT devices. We experiment TinyOL under supervised and unsupervised setups using an autoencoder neural network. Finally, we report the performance of the proposed solution and show its effectiveness and feasibility.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

3.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available