4.7 Article

Uptake and metabolism of 10:2 fluorotelomer alcohol in soil-earthworm (Eisenia fetida) and soil-wheat (Triticum aestivum L.) systems

Journal

ENVIRONMENTAL POLLUTION
Volume 220, Issue -, Pages 124-131

Publisher

ELSEVIER SCI LTD
DOI: 10.1016/j.envpol.2016.09.030

Keywords

10:2 FTOH; Bioaccumulation; Biotransformation; Wheat; Earthworm

Funding

  1. Natural Science Foundation of China (NSFC) [41603106, 21325730, 21577067, 21277077]
  2. Fundamental Research Funds for the Central Universities [DUT16RC(4)83]

Ask authors/readers for more resources

The behavior of 10:2 fluorotelomer alcohol (10:2 FTOH) in the systems of soil-earthworm (Eisenia fetida), soil-wheat (Triticum aestivum L.) and soil-earthworm-wheat, including degradation in soil, uptake and metabolism in wheat and earthworms were investigated. Several perfluorocarboxylic acids (PFCAs) as degradation products of 10:2 FTOH were identified in the soil, plant and earthworms. 10:2 FTOH could be biodegraded to perfluorooctanoate (PFOA), perfluorononanate (PFNA) and perfluorodecanoate (PFDA) in soil in the absence or presence of wheat/earthworms, and PFDA was the predominant metabolite. Accumulation of initial 10:2 FTOH and its metabolites were observed in the wheat and earthworms, suggesting that 10:2 FTOH could be bioaccumulated in wheat and earthworms and biotransformed to the highly stable PFCAs. Perfluoropentanoic acid (PFPeA), perfluorohexanoic (PFHxA) and PFDA were detected in wheat root, while PFDA and perfluoroundecanoic acid (PFUnDA) were detected in shoot. PFNA and PFDA were determined in earthworms and the concentration of PFDA was much higher. The presence of earthworms and/or plant stimulated the microbial degradation of 10:2 FTOH in soil. The results supplied important evidence that degradation of 10:2 FTOH was an important potential source of PFCAs in the environment and in biota. (C) 2016 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available