4.7 Article

Projections of shipping emissions and the related impact on air pollution and human health in the Nordic region

Journal

ATMOSPHERIC CHEMISTRY AND PHYSICS
Volume 21, Issue 16, Pages 12495-12519

Publisher

COPERNICUS GESELLSCHAFT MBH
DOI: 10.5194/acp-21-12495-2021

Keywords

-

Funding

  1. Nordic Council of Ministers
  2. NordForsk under the Nordic Programme on Health and Welfare [75007]
  3. European Union [820655, 874990]
  4. AKA (Academy of Finland) [326328]
  5. ANR [ANR-18-EBI4-0007]
  6. BMBF [KFZ 01LC1810A]
  7. FORMAS [2018-02434, 2018-02436, 2018-02437, 201802438]
  8. MICINN [APCIN PCI2018-093149]
  9. 2017-2018 Belmont Forum and BiodivERsA joint call for research proposals, under the BiodivScen ERA-Net COFUND programme BioDiv-Support project
  10. Vinnova [2018-02436, 2018-02437, 2018-02434] Funding Source: Vinnova
  11. Formas [2018-02436, 2018-02434, 2018-02437] Funding Source: Formas
  12. Agence Nationale de la Recherche (ANR) [ANR-18-EBI4-0007] Funding Source: Agence Nationale de la Recherche (ANR)
  13. Academy of Finland (AKA) [326328, 326328] Funding Source: Academy of Finland (AKA)

Ask authors/readers for more resources

International initiatives have successfully reduced emissions from shipping in Emission Control Areas, but concerns remain about potential counteractions from increased shipping in the future. This study aims to provide updated insights on future ship emissions and their impact on air quality in the Nordic and Arctic areas, through detailed scenario planning and modeling. The projections suggest a decrease in premature deaths related to air pollution, including from shipping emissions, by 2050 with proper regulations and measures in place.
International initiatives have successfully brought down the emissions, and hence also the related negative impacts on environment and human health, from shipping in Emission Control Areas (ECAs). However, the question remains as to whether increased shipping in the future will counteract these emission reductions. The overall goal of this study is to provide an up-to-date view on future ship emissions and provide a holistic view on atmospheric pollutants and their contribution to air quality in the Nordic (and Arctic) area. The first step has been to set up new and detailed scenarios for the potential developments in global shipping emissions, including different regulations and new routes in the Arctic. The scenarios include a Baseline scenario and two additional SOx Emission Control Areas (SE-CAs) and heavy fuel oil (HFO) ban scenarios. All three scenarios are calculated in two variants involving Business-AsUsual (BAU) and High-Growth (HiG) traffic scenarios. Additionally a Polar route scenario is included with new ship traffic routes in the future Arctic with less sea ice. This has been combined with existing Current Legislation scenarios for the land-based emissions (ECLIPSE V5a) and used as input for two Nordic chemistry transport models (DEHM and MATCH). Thereby, the current (2015) and future (2030, 2050) air pollution levels and the contribution from shipping have been simulated for the Nordic and Arctic areas. Population exposure and the number of premature deaths attributable to air pollution in the Nordic area have thereafter been assessed by using the health assessment model EVA (Economic Valuation of Air pollution). It is estimated that within the Nordic region approximately 9900 persons died prematurely due to air pollution in 2015 (corresponding to approximately 37 premature deaths for every 100 000 inhabitants). When including the projected development in both shipping and land-based emissions, this number is estimated to decrease to approximately 7900 in 2050. Shipping alone is associated with about 850 premature deaths during presentday conditions (as a mean over the two models), decreasing to approximately 600 cases in the 2050 BAU scenario. Introducing a HFO ban has the potential to lower the number of cases associated with emissions from shipping to approximately 550 in 2050, while the SECA scenario has a smaller impact. The worst-case scenario of no additional regulation of shipping emissions combined with a high growth in the shipping traffic will, on the other hand, lead to a small increase in the relative impact of shipping, and the number of premature deaths related to shipping is in that scenario projected to be around 900 in 2050. This scenario also leads to increased deposition of nitrogen and black carbon in the Arctic, with potential impacts on environment and climate.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available