4.6 Article

Quantum variational optimization: The role of entanglement and problem hardness

Journal

PHYSICAL REVIEW A
Volume 104, Issue 6, Pages -

Publisher

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevA.104.062426

Keywords

-

Funding

  1. CAM/FEDER Project (QUITEMAD-CM) [S2018/TCS-4342]
  2. Spanish project (MCIU/AEI/FEDER, UE) [PGC2018-094792-B-I00]
  3. CSIC Quantum Technology Platform [PT-001]

Ask authors/readers for more resources

Quantum variational optimization is proposed as an alternative approach for solving optimization problems faster and at larger scale than classical methods. The study focuses on the role of entanglement, the structure of quantum circuits, and the optimization problem's structure, showing advantages in adapting entangling gates distribution to problem topology and applying conditional value-at-risk cost functions. Results suggest the potential of outperforming existing NISQ architectures in certain regimes.
Quantum variational optimization has been posed as an alternative to solve optimization problems faster and at a larger scale than what classical methods allow. In this paper we study systematically the role of entanglement, the structure of the variational quantum circuit, and the structure of the optimization problem, in the success and efficiency of these algorithms. For this purpose, our study focuses on the variational quantum eigensolver (VQE) algorithm, as applied to quadratic unconstrained binary optimization (QUBO) problems on random graphs with tunable density. Our numerical results indicate an advantage in adapting the distribution of entangling gates to the problem's topology, specially for problems defined on low-dimensional graphs. Furthermore, we find evidence that applying conditional value at risk type cost functions improves the optimization, increasing the probability of overlap with the optimal solutions. However, these techniques also improve the performance of Ansatze based on product states (no entanglement), suggesting that a new classical optimization method based on these could outperform existing NISQ architectures in certain regimes. Finally, our study also reveals a correlation between the hardness of a problem and the Hamming distance between the ground- and first-excited state, an idea that can be used to engineer benchmarks and understand the performance bottlenecks of optimization methods.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available