4.6 Article

The Hubble tension in light of the Full-Shape analysis of Large-Scale Structure data

Journal

Publisher

IOP Publishing Ltd
DOI: 10.1088/1475-7516/2021/05/072

Keywords

cosmological parameters from CMBR; cosmological parameters from LSS

Ask authors/readers for more resources

The disagreement between direct late-time measurements of the Hubble constant and early-universe measurements may be explained by new physics, but currently two models for early universe physics do not significantly alleviate the tension in cosmological parameters.
The disagreement between direct late-time measurements of the Hubble constant from the SH0ES collaboration, and early-universe measurements based on the Lambda CDM model from the Planck collaboration might, at least in principle, be explained by new physics in the early universe. Recently, the application of the Effective Field Theory of Large-Scale Structure to the full shape of the power spectrum of the SDSS/BOSS data has revealed a new, rather powerful, way to measure the Hubble constant and the other cosmological parameters from Large-Scale Structure surveys. In light of this, we analyze two models for early universe physics, Early Dark Energy and Rock 'n' Roll, that were designed to significantly ameliorate the Hubble tension. Upon including the information from the full shape to the Planck, BAO, and Supernovae measurements, we find that the degeneracies in the cosmological parameters that were introduced by these models are well broken by the data, so that these two models do not significantly ameliorate the tension.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available