4.7 Article

Kinetic modeling and dynamic analysis of simultaneous saccharification and fermentation of cellulose to bioethanol

Journal

ENERGY CONVERSION AND MANAGEMENT
Volume 141, Issue -, Pages 236-243

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.enconman.2016.08.025

Keywords

Simultaneous saccharification and fermentation; Enzyme loading; Bioethanol; Glucose; Mannose; Ethanol yield

Funding

  1. NSERC Discovery Grant
  2. New-foundland Centre for Forest Science and Innovation

Ask authors/readers for more resources

Kinetic modeling and dynamic analysis of the simultaneous saccharification and fermentation (SSF) of cellulose to ethanol was carried out in this study to determine the key reaction kinetics parameters and product inhibition features of the process. To obtain the more reliable kinetic parameters which can be applied for a wide range of operating conditions, batch SSF experiments were carried out at three enzyme loadings (10, 15 and 20 FPU/g cellulose) and two levels of initial concentrations of fermentable sugars (glucose and mannose). Results indicated that the maximum ethanol yield and concentration were achieved at high level of sugar concentrations with intermediate enzyme loading (15 FPU/g cellulose). Dynamic analysis of the acquired experimental results revealed that cellulase inhibition by cellobiose plays the most important role at high level of enzyme loading and low level of initial sugar concentrations. The inhibition of glucose becomes significant when high concentrations of sugars were present in the feedstock. Experimental results of SSF process also reveal that an efficient mixing between the phases helps to improve the ethanol yield significantly.(C) 2016 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available