4.0 Article

Hypertension induces compensatory left ventricular hypertrophy by a mechanism involving gap junction lateralization and overexpression of CD36, PKC and MMP-2

Journal

ROMANIAN JOURNAL OF MORPHOLOGY AND EMBRYOLOGY
Volume 62, Issue 3, Pages 713-721

Publisher

EDITURA ACAD ROMANE
DOI: 10.47162/RJME.62.3.08

Keywords

ventricular hypertrophy; experimental hypertension; gap junction; intramyocardial lipid droplets

Funding

  1. European Regional Development Fund through the Competitiveness Operational Program 2014-2020 [POC-A.1-A.1.1.4-E-2015, P_37_668]
  2. Romanian National Authority for Scientific Research, CNCS-UEFISCDI [PN-III-P1-1.2-PCCDI-2017-0527, PN-III-P1-1.2-PCCDI2017-0797]
  3. Romanian Academy

Ask authors/readers for more resources

This study revealed the structural and molecular changes in hypertension-induced left ventricular hypertrophy, indicating that some regulatory mechanisms may help the heart adapt to increased stress.
Hypertension-induced left ventricular hypertrophy evolves initially as an adaptive response meant to minimize ventricular wall stress. The mechanisms involved in the preservation of the cardiac function during the compensatory phase of the left ventricular hypertrophy are still unclear. Therefore, we aimed at uncovering fine changes that aid the heart to cope with the increased stress in hypertension. Male golden Syrian hamsters were given NG-nitro-L-arginine methyl ester (L-NAME) for 16 weeks, and they became hypertensive (HT), developing left ventricular hypertrophy with no impaired contractility or fibrosis. As compared to age-matched control hamsters, the hypertrophied left ventricles in L-NAME-induced HT hamsters exhibited the following structural and molecular changes: (i) accumulation of lipid droplets (LDs) within cardiomyocytes and relocation of gap junctions to the lateral membrane of cardiomyocytes or close to mitochondria (revealed by electron microscopy); (ii) overexpression of the cluster of differentiation 36 (CD36) fatty acid transporter, protein kinase C (PKC), and matrix metalloproteinase-2 (MMP-2), enhanced activation of the phosphoinositide 3-kinase (PI3K)/protein kinase B (AKT) pathway, and unchanged expression of the connexin 43 (Cx43) and N-cadherin junctional proteins (assessed by Western blot); (ii) increased protein carbonyl content, assessed with a 2,4-Dinitrophenylhydrazine (DNPH)-based spectrophotometric assay, indicative of an enhanced reactive oxygen species (ROS) production; and (iv) augmented MMP-2 activity (determined by gelatin zymography). These changes may participate in an orchestrated adaptive hypertrophic growth response that helps to maintain cardiac performance, in HT hamsters. Together, these findings could provide support for designing future strategies meant to prevent the transition from compensatory left ventricular hypertrophy to decompensated heart failure.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.0
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available