4.8 Article

Self-healing SEI enables full-cell cycling of a silicon-majority anode with a coulombic efficiency exceeding 99.9%

Journal

ENERGY & ENVIRONMENTAL SCIENCE
Volume 10, Issue 2, Pages 580-592

Publisher

ROYAL SOC CHEMISTRY
DOI: 10.1039/c6ee02685k

Keywords

-

Funding

  1. NSF [ECCS-1610806]
  2. Assistant Secretary for Energy Efficiency and Renewable Energy, Office of Vehicle Technologies of the U. S. Department of Energy under the Battery Materials Research (BMR) Program
  3. Chinese Scholarship Council
  4. Tongji University
  5. National Natural Science Foundation of China (NSFC) [51602222, 51632001]
  6. Div Of Electrical, Commun & Cyber Sys
  7. Directorate For Engineering [1610806] Funding Source: National Science Foundation

Ask authors/readers for more resources

Despite active developments, full-cell cycling of Li-battery anodes with 450 wt% Si (a Si-majority anode, SiMA) is rare. The main challenge lies in the solid electrolyte interphase (SEI), which when formed naturally (nSEI), is fragile and cannot tolerate the large volume changes of Si during lithiation/delithiation. An artificial SEI (aSEI) with a specific set of mechanical characteristics is henceforth designed; we enclose Si within a TiO2 shell thinner than 15 nm, which may or may not be completely hermetic at the beginning. In situ TEM experiments show that the TiO2 shell exhibits 5 x greater strength than an amorphous carbon shell. Void-padded compartmentalization of Si can survive the huge volume changes and electrolyte ingression, with a self-healing aSEI + nSEI. The half-cell capacity exceeds 990 mA h g (-1) after 1500 cycles. To improve the volumetric capacity, we further compress SiMA 3-fold from its tap density (0.4 g cm(-3)) to 1.4 g cm(-3), and then run the full-cell battery tests against a 3 mA h cm(-2) LiCoO2 cathode. Despite some TiO2 enclosures being inevitably broken, 2x the volumetric capacity (1100 mA h cm (-3)) and 2x the gravimetric capacity (762 mA h g(-1)) of commercial graphite anode is achieved in stable full-cell battery cycling, with a stabilized areal capacity of 1.6 mA h cm(-2) at the 100th cycle. The initial lithium loss, characterized by the coulombic inefficiency (CI), is carefully tallied on a logarithmic scale and compared with the actual full-cell capacity loss. It is shown that a strong, non-adherent aSEI, even if partially cracked, facilitates an adaptive self-repair mechanism that enables full-cell cycling of a SiMA, leading to a stabilized coulombic efficiency exceeding 99.9%.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available