4.8 Article

A copper nickel mixed oxide hole selective layer for Au-free transparent cuprous oxide photocathodes

Journal

ENERGY & ENVIRONMENTAL SCIENCE
Volume 10, Issue 4, Pages 912-918

Publisher

ROYAL SOC CHEMISTRY
DOI: 10.1039/c6ee03613a

Keywords

-

Funding

  1. PECDEMO project - Europe's Fuel Cell and Hydrogen Joint Undertaking (FCH JU) [621252]
  2. Swiss Federal Office for Energy
  3. Nano-Tera NTF project (TANDEM)
  4. PHOCS project under the Future and Emerging Technologies programme of the European Commission [309223]

Ask authors/readers for more resources

State-of-the-art cuprous oxide (Cu2O) photocathodes for photoelectrochemical (PEC) water splitting have a long tradition of using gold (Au)-coated F-doped SnO2 (FTO) substrates for the improvement of Cu2O electrodeposition and overall PEC performance. Au is one of the best contact materials for Cu2O photocathodes due to its large work function enabling proper alignment with the valence band level of Cu2O. Due to its relatively large band gap (2.0 eV), Cu2O is preferentially used as the top-cell absorber in tandem with a photoanode or a photovoltaic (PV) cell for overall solar-driven water splitting. However, the Au contact poses a major issue due to its poor transparency. Moreover, Au is a precious metal, which increases the cost and can hinder the scalability of PEC devices. In this work, we propose an effective replacement of the Au layer with a transparent and costefficient copper-nickel mixed oxide (CuO/NiO) thin film, which is prepared by a facile sequential sputtering deposition combined with an annealing process in air. We successfully demonstrate that a thin layer of the CuO/NiO film shows better transparency as well as well-aligned energy levels for efficient hole collection leading to an improved PEC performance compared to the performance of a Au-contact based equivalent device in a pH 5 electrolyte biased at 0 V versus the reversible hydrogen electrode. This new transparent and efficient CuO/NiO layer paves the way for the development of efficient, yet inexpensive PEC-PV or photocathode-photoanode stacked tandem devices for a hydrogen fuel based economy.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available