4.7 Article

Effect of micro combustor geometry on combustion and emission behavior of premixed hydrogen/air flames

Journal

ENERGY
Volume 135, Issue -, Pages 585-597

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.energy.2017.06.169

Keywords

Hydrogen; Micro scale combustion; Combustor geometry

Funding

  1. Scientific and Technological Research Council of Turkey [TUBITAK-MAG-215M821]
  2. Scientific and Technological Research Council of Turkey [TUBITAK-MAG-215M821]

Ask authors/readers for more resources

In this study, effect of micro combustor geometry on combustion and emission behavior of premixed hydrogen/air mixtures is numerically investigated. An experimentally tested micro combustor geometry is varied by establishing a cavity or a backward facing step or micro channels inside the combustor. Considering effect of combustor geometry on the amount of heat transferred through wall based on outer wall and combustor centerline temperature distributions, combustion behavior is analyzed. Emission behavior is examined by means of mixing conditions, combustion efficiency and maximum temperature value which are highly bound to geometric properties of a micro combustor. Turbulence model used in this study is Renormalization Group k-epsilon. For turbulence chemistry interaction, Eddy Dissipation Concept model is used. Multistep combustion reaction scheme includes 9 species and 19 steps. Numerical results obtained from this study are validated with published experimental data. Results of this study revealed that combustion in such combustors can be improved by means of quality of mixing process, residence time, combustor centerline and outer wall temperature distributions, conversion rate of input chemical energy to utilizable heat and emanated NOx levels from combustor outlet with proposed geometric variations. (C) 2017 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available