4.7 Article

Stochastic multi-objective optimization of combined heat and power economic/emission dispatch

Journal

ENERGY
Volume 141, Issue -, Pages 1892-1904

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.energy.2017.11.124

Keywords

Economic/emission dispatch; Emission reduction; Combined heat and power plant; Deterministic model; Stochastic model

Ask authors/readers for more resources

In this paper, an optimization technique based on time-varying acceleration particle swarm optimization (TVAC-PSO) is applied for optimizing economic dispatch and emission reduction problems in a system consisting of CHP units. At first algorithm is used for deterministic model that for comparison with previous works. Besides, its convergence speed is adequately high. Then Monte Carlo method is implemented to solve the stochastic model providing real situation. In the Monte Carlo simulation you have a range of values as a result, and you are able to understand the risk and uncertainty in the model. Deterministic models used for conventional economic dispatch problems are not able to address some real conditions in practical applications. Deterministic models of power system applications are incapable to express the uncertainties that come from energy demand and supply of intermittent renewable systems. Due to the presence of these various uncertain variables stochastic attitude is inevitable in practical applications. Therefore, solving economic dispatch and emission reduction problems simultaneously and stochastically that is the main objective of this paper has a great level of importance. For modeling accurately, both power transmission losses and nonlinear fuel cost function are considered. The proposed method is applied to a 7-unit test system. (C) 2017 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available